Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dung tnh chat day ti so bang nhau ta co:
a/b=b/c suy ra a^2/b^2=b^2/c^2=(a^2+b^2)/(b^2+c^2)
suy ra a^2/b^2=(a^2+b^2)/(b^2+c^2)
suy ra a/b.b/c=(a^2+b^2)/(b^2+c^2)
suy ra a/c= (a^2+b^2)/(b^2+c^2)
Vì \(\dfrac{a}{b}=\dfrac{b}{c}\) \(=>ac=b^2\)
Ta có: \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a.\left(a+c\right)}{c.\left(a+c\right)}=\dfrac{a}{c}\)(đpcm)
Ta có : a/b=b/c
suy ra ac= b^2 thay vào ta có
a^2+ ac/ ac+c^2 = a(a+c)/ c(a+c) = a/c
vậy a^2+b^2/ b^2 + c^2 = a/c
\(từ\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck,b=dk\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{ck+c}{dk+d}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}=\frac{a}{c}\)(đpcm)
HỌCtốt
giả sử :c^2>a^2>b^2 khi đó ta có :
\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)
Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c
chuc bn hk tốt!
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
\(\frac{a^2+b^2}{a.3+b^3}=\frac{c^2+d^2}{c.3+d^3}\)
Vì \(\frac{a}{b}=\frac{c}{d}\) . Nên :
=> \(a^2=c^2\) (1)
=> b2 = d2 (2)
=> a.3 = c.3 (3)
=> b3 = d3 (4)
Từ (1),(2),(3) và (4) => đpcm
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=>\(\frac{a}{c}=\frac{b}{d}\)\(=\)\(\frac{a^2+b^2}{c^2+d^2}\)
Từ (1),(2)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.3+b^3}{c.3+d^3}\)
=>\(\frac{a^2+b^2}{a.3+b^3}=\frac{c^2+d^2}{c.3+d^3}\)
Ta có: (a+b+c)2=a2+b2+c2
<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2
<=>ab+bc+ca=0
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)
Thay (1) vào (2) ta đc:
\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
toán lớp 7 có cái này hả??
Ta có:\((a+b+c)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
<=>\(ab+ac+bc=0\)
Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên
Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)
Nhân với abc cả hai vế
\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)
<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)
mà ab+ac+bc=0
=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)
<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)
<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)
<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)
<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)
<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)
tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0
Ta có \(ab+ac+bc=0\)(1)
mà a,b,c khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)
=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)
=>\({1\over a}+ {1\over b}+ {1\over c}=0\)
Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được