K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(a\left(a+2\right)< \left(a+1\right)^2\)

\(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\)(luôn đúng)

Do bđt cuối luôn đúng nên bđt ban đầu đc cm

7 tháng 8 2016

Do a2 + 2a < a2 + 2a + 1

=> a.(a + 2) < a2 + a + a + 1

=> a.(a + 2) < a.(a + 1) + (a + 1)

=> a.(a + 2) < (a + 1)2 (đpcm)

26 tháng 5 2018

tích đi rồi t làm 

27 tháng 5 2018

9 T I C H  sai buồn

\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)

nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung 

\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)

\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)

\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)

b) thay y=625 vào ta được

\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)

vậy   \(0< x< 5\)

7 tháng 8 2016

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :

\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)

Lại đặt \(t=\frac{1}{y}\)\(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0

Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0 

13 tháng 8 2021

sửa hộ mình 

pt có 2 nghiệm phân biệt 

\(a_1=-5-\sqrt{24};a_2=-5+\sqrt{24}\)

13 tháng 8 2021

giải phương trình hả bạn ? 

\(a^2+10a+1=0\)

\(\Delta'=25-1=24>0\)

pt có 2 nghiệm pb 

\(x_1=\frac{5-\sqrt{24}}{1}=5-\sqrt{24};x_2=5+\sqrt{24}\)

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình 

13 tháng 8 2016
Bạn có thể ghi đề rõ hơn được không nhìn cái đề mình đọc không hiểu
6 tháng 8 2019

Tự vẽ hình 

Kẻ BH \(\perp\)AC và \(CK\perp\)AB

Tam giác AKC vuông tại K

=>CK=bsinA (1)

Tam giác BKC vuông tại K 

=>CK=asinB  (2)

Từ (1) (2)=>bsinA=asinB

<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)

Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)

Vậy ....