Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b
Vì 5a + 9b chia hết cho 13 => 2(5a + 9b) chia hết cho 13
13b chia hết cho 13
=> 5.(2a + b) chia hết cho 13 (Áp dụng tính chất a ; b chia hết cho c thì a - c chia hết cho c)
mà (5; 13) = 1 nên 2a+ b chia hết cho 13
b) Xét hiệu 7.(6a + 7b) - 6(7a + 5b) = 42a + 49b - (42a + 30b) = (42a - 42a) + (49b - 30b) = 19b
=> 7.(6a + 7b) = 19b + 6(7a + 5b)
Vì 19b chia hết cho 19 và 6.(7a + 5b) chia hết cho 19 ( do 7a + 5b chia hết cho 19)
Nên 7.(6a + 7b) chia hết cho 19. ta có (7; 19) = 1 => 6a + 7b chia hết cho 19
*) Với bài tập này: Áp dụng tính chất x; y chia hết cho z thì x- y ; x + y chia hết cho z
Muốn vậy, ta nhân vào hai biểu thức đã cho số thích hợp nhằm khử a hoặc b (bài trên : khử đi a) để kết quả thu được là bội của số cần chứng minh chia hết
Quên thanks Trần Đức Thắng , mà làm câu Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19 luôn đi
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)
Ta có: \(5\cdot\left(5a+2b\right)+\left(9a+7b\right)=25a+10b+9a+7b=34a+17b\)
\(\Rightarrow34a+17b=17\left(2a+b\right)⋮17\)
Do đó: \(\left(5a+2b\right)⋮17\Rightarrow\left(9a+7b\right)⋮17\)
Ta thấy : 5a - 3b chia hết cho 31 => 4(5a-3b) chia hết cho 31 = 20a - 12b
=> (51a - 12b) - ( 20a-12b) chia hết cho 31
=> 31a chia hết cho 31
=> đá phải con ma
Ta có: 5a-3b chia hết cho 31
=>4.(5a-3b) chia hết cho 31
=>20a-12b chia hết cho 31
=>20a-12b+31a chia hết cho 31
=>51a-12b chi hết cho 31
Ngược lại:
51a-12b chi hết cho 31
=>20a-12b+31a chia hết cho 31
=>20a-12b chia hết cho 31
=>4.(5a-3b) chia hết cho 31
Mà (4,31)=1
=>5a-3b chia hết cho 31
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿