K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

$a\equiv 1\pmod 2$ nên $a$ có dạng $2k+1$ $(k\in\mathbb{Z}$

Khi đó:

$a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$

Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$

$\Rightarrow 4k(k+1)\vdots 8$

$\Rightarrow a^2=4k(k+1)+1$ chia $8$ dư $1$ hay $a^2\equiv 1\pmod 8$

b)

$a\equiv 1\pmod 3\Rightarrow a-1\equiv 0\pmod 3(1)$ hay

Lại có:

$a\equiv 1\pmod 3\Rightarrow a^2+a+1\equiv 1+1+1\equiv 0\pmod 3(2)$

Từ $(1);(2)\Rightarrow (a-1)(a^2+a+1)\equiv 0\pmod 9$

hay $a^3-1\equiv 0\pmod 9\Leftrightarrow a^3\equiv 1\pmod 9$

5 tháng 8 2016

chtt là đc ý đầu 
ý sau thì dùng nhị neww

5 tháng 8 2016

chtt là j bác

Cái này là định lí Fermat nhỏ mà nhỉ

 chứng minh bằng cách dùng hệ quả của định lý Euler.

https://diendantoanhoc.net/topic/123358-ch%E1%BB%A9ng-minh-%C4%91%E1%BB%8Bnh-l%C3%BD-fermat-nh%E1%BB%8F/

Xem tại link này(Mik ngại viết lắm)

30 tháng 9 2019

n^2 chia cho:

+) 3 dư 0,1

+) 4 dư 0,1,3 (tương tự)

n^3:

+)7 dư 0,1,6

+) 5 dư 0,1,2,3,4

Bạn muốn giải chi tiết thì đặt n=3k;3k+1 chẳng hạn