Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2009^{2010}+2009^{2009}=2009^{2009}.2009+2009^{2009}=2009^{2009}.\left(2009+1\right)=2009.2010\)\(2010^{2010}=2010.2010^{2009}\)
Dễ thấy \(2009^{2009}.2010<2010.2010^{2009}\)
Nên \(2009^{2010}+2009^{2009}<2010^{2010}\)
S=(2010+2010^2)+(2010^3+2010^4)+...+(20010^2009)+(2010^2010)
=2010(1+2010)+2010^3(1+2010)+...+2010^2009(1+2010)
=2010.2011+2010^3.2011+...+2010^2009.2011
=2011(2010+...+2010^2009) chia hết 2011
nha
\(2009^{2010}.2009^{2009}=2009^{2009}\left(2009+1\right)\)
\(2010^{2010}=2010^{2009}.2010\)
Vì \(2009^{2009}.2010<2010^{2009}.2010\) nên \(2009^{2010}+2009^{2009}<2010^{2010}\)
b) Ta có: A = \(10^{2012}+10^{2011}+10^{2010}+10^{2009}+8\) \(=\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+8=\left(.....8\right)\)
\(\Rightarrow\) A có tận cùng là 8
Mà số chính phương không có tận cùng là 8 nên A không phải số chính phương (đpcm)
giải đê