K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Áp dụng hàm đẳng thức vào biểu thức trên ta được:

(x-y)^3 +( y-z )^3 +( z-x )^3

=(x^3-3.x^2.y+3.x.y^2-y^3)+(y^3-3.y^2.z+3.y.z^2-z^3)+(z^3-3.z^2.x+3.z.x^2-x^3)

=-3.x^2.y+3.x.y^2-3.y^2.z+3.y.z^2-3.z^2.x+3.z.x^2

=3.(.x^2.y+x.y^2-y^2.z+y.z^2-z^2.x+z.x^2)..

đén đây thì mình chịu, mong bạn thông cảm cho mình nha!(~~__~~)

13 tháng 11 2017

x^3+y^3+z^3=3xyz

<=>x^3+y^3+z^3-3xyz=0

<=>(x+y+z).(x^2+y^2+z^2-xy-yz-zx)=0

<=>x^2+y^2+z^2-xy-yz-zx=0 (vì x,y,z > 0 nên x+y+z > 0)

<=>2x^2+2y^2+2z^2-2xy-2yz-2zx=0

<=>(x-y)^2+(y-z)^2+(z-x)^2=0

<=>x-y=0;y-z=0;z-x=0

<=>x=y=z (ĐPCM)

k mk nha

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

1 tháng 8 2017

ai giúp hộ kìa

---------
Nếu cả 3 số xyz đều không chia hết cho 2 thì x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2

Do đó trong ba số tồn tại một số chia hết cho 2, suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 nên M ⋮ 6

Tick nha 

18 tháng 1 2016

Nếu cả 3 số xyz đều không chia hết cho 2 thì

 x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2,

suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 

nên M ⋮ 6

2 tháng 12 2019

Ta có: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)

Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(\left(x-1\right)x\left(x+1\right)⋮3\)

hay \(x^3-x⋮3\)

Tương tự \(y^3-y⋮3\);\(z^3-z⋮3\)

\(\Rightarrow x^3+y^3+z^3-\left(x+y+z\right)⋮3\)

Mà \(\left(x+y+z\right)⋮3\left(gt\right)\Rightarrow a^3+b^3+c^3⋮3\left(đpcm\right)\)