Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(x^2+6x+9+1\)
=\(\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x
=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x
Vậy A luôn luôn dương với mọi x
B=4\(x^2-4x+1+2\)
=\(\left(2x-1\right)^2+2\)
Vì\(\left(2x-1\right)^2\ge0\forall\) x
=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)
Vậy B luôn luôn dương với x thuộc R
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
1/ Sửa đề a+b=1
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào M ta được:
\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
2n-1 | 1 | -1 | 2 | -2 |
n | 1 | 0 | 3/2 (loại) | -1/2 (loại) |
Vậy n={1;0}
A= x2-4x+5
<=> x2-2*x*2+22+1
<=> ( x-2)2+1 vì (x-2)>= 0
=> A >= 1 (dương)
B x2 -x+1
<=> x2- 2*x *1/2 +(1/2)2+3/4
<=> ( x-1/2)2+3/4
vì ( x-1/2)2 >= 0
=> B>= 3/4 (dương)
a) x2-6x+10
=x2-6x+9+1
=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)
vậy x^2-6x+10 luôn luôn dương với mọi x
4x-x2-5
=-x2+4x-4-1
=-(x2-4x+4)-1
=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )
vậy 4x-x^2-5 luôn luôn âm với mọi x
Bài 1: \(A=x^2-2x+3\)
\(=x^2-2x+1+2\)
\(=\left(x-1\right)^2+2\ge2\forall x\)
Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
Bài 2:
\(2x^2+4x+11=2x^2+4x+2+9\)
\(=2\left(x^2+2x+1\right)+9\)
\(=2\left(x+1\right)^2+9\ge9>0\forall x\)
A=x2-6x+10
A=x2-2*3x+32+1
A=(x-3)2+1
Ta có: (x-3)2> và = 0 với mọi x
Dấu "=" xảy ra=>(x-3)^2=0<=>x-3=0<=>x=3
=>A> và = 1 > 0 với mọi x
Vậy A luôn dương với mọi x
B=4x^2+4x+1+2
B=(2x+1)^2+2
Ta có: (2x+1)^2 > và = 0 với mọi x
Dấu "=" xảy ra<=> (2x+1)^2=0<=>2x+1=0<=>x=-1/2
=>B> và = 2 >0 với mọi x
Vậy B luôn dương với mọi x
a) Đa thức A=x(x-6)+10
Ta có: \(A=x\left(x-6\right)+10\)
\(=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)
hay \(A=x\left(x-6\right)+10>0\forall x\)(đpcm)
b) Đa thức \(B=4x^2-4x+3\)
Ta có: \(B=4x^2-4x+3\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1+2\)
\(=\left(2x-1\right)^2+2\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
hay \(\left(2x-1\right)^2+2\ge2>0\forall x\)
Vậy: \(B=4x^2-4x+3\)>0\(\forall x\in R\)(đpcm)