K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a.

-x2 + 4x - 9 <= -5

<=> -x2 + 4x - 4 <= 0

<=> -(x2 - 4x + 4) <= 0

<=> -(x - 2)<= 0. Luôn đúng với mọi x

b.

x2 - 2x + 9 >= 8

<=> x2 - 2x + 1 >= 0

<=> (x - 1)2 >= 0. Luôn đúng với mọi x

10 tháng 5 2017

nhỏ hơn hoặc bằng 0 đều đúng nhé

1 tháng 5 2017

1, 2x2-6x+1=0

\(\Leftrightarrow\) 2(x2-3x+\(\dfrac{1}{2}\))=0

\(\Leftrightarrow\)x2-3x+\(\dfrac{1}{2}\)=0(vì 2 \(\ne\) 0)

\(\Leftrightarrow\)x2-2.\(\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{1}{2}-\dfrac{9}{4}\)=0

\(\Leftrightarrow\)(x-\(\dfrac{3}{2}\))2-\(\dfrac{7}{4}\)=0

\(\Leftrightarrow\)(x-\(\dfrac{3+\sqrt{7}}{2}\))(x-\(\dfrac{3-\sqrt{7}}{2}\))=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

Vậy tập nghiệm bạn tự giải nhé

2a, -x2+4x-9\(\le\)5

\(\Leftrightarrow\)-x2+4x-4\(\le\)0

\(\Leftrightarrow\)-(x-2)2\(\le\)0

\(\Leftrightarrow\)(x-2)2\(\ge\)0 đúng \(\forall\) x

Vậy dfcm

1 tháng 5 2017

còn câu b bạn viết đề chưa hết \(\ge\) mấy

2 tháng 5 2019

a) 5(2 - 3n) + 42 + 3n ≥ 0

⇔ 10 - 15n +42 +3n ≥ 0

⇔ -15n +3n ≥ -10-42

⇔ -12n ≥ -52

⇔ n = \(\frac{52}{12}=\frac{13}{3}\)

S = {\(\frac{13}{3}\)}

mk chỉ giải đc ngang đây hiu

3 tháng 5 2019

1b) (n+1)2 - (n+2)(n-2) \(\le\) 15

(=) (n2 + 2n +1) - (n2 - 4 ) \(\le\) 15

(=) n2 +2n +1 - n2 + 4 \(\le\)15

(=) 2n + 5 \(\le\) 15

(=) 2n \(\le\) 10 (=) n\(\le\) 5 tn { x | x \(\le\) 5 }

13 tháng 10 2018

Bài 1:

Ta có:

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có:

\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)

\(\Rightarrow4x-x^2-5< 0\)

8 tháng 4 2018

a, Ta có: \(-x^2+4x-9+5=-x^2+4x-4\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\le0\)

=> \(-x^2+4x-9\le-5\)

b, Ta có: \(x^2-2x+9-8=x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(x^2-2x+9\ge8\)

a, Ta có: −x2+4x−9+5=−x2+4x−4−x2+4x−9+5=−x2+4x−4

=−(x2−4x+4)=−(x2−4x+4)

=−(x−2)2≤0=−(x−2)2≤0

=> −x2+4x−9≤−5−x2+4x−9≤−5

b, Ta có: x2−2x+9−8=x2−2x+1=(x−1)2≥0x2−2x+9−8=x2−2x+1=(x−1)2≥0

=> x2−2x+9≥8

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

29 tháng 10 2018

a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)

\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)

\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)

nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)

b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)

nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự