K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

mỗi câu  là một bài nha

29 tháng 12 2018

câu 2

Dựng AH là đường cao của ΔABC, khi đó ΔABM,ΔAMC chung chiều cao AH. Ta có:

SAMB=12BM.AH

SAMC=12CM.AH

mà BM=CMBM=CM (vì AM là đường trung tuyến)

Vậy  SAMB=SAMC.

S là diện -.-

25 tháng 5 2018

Ta có cách tính diện tích ΔAOB với đường cao OM và cạnh đáy AB:

Giải bài 17 trang 121 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta lại có cách tính diện tích ΔAOB vuông với hai cạnh góc vuông OA, OB là:

Giải bài 17 trang 121 Toán 8 Tập 1 | Giải bài tập Toán 8

29 tháng 12 2018

Dựng AH là đường cao của ΔABC, khi đó ΔABM,ΔAMC chung chiều cao AH. Ta có:

SAMB=12BM.AH

SAMC=12CM.AH

mà BM=CMBM=CM (vì AM là đường trung tuyến)

Vậy  SAMB=SAMC.

S là diện -.-

29 tháng 12 2018

Câu hỏi của Bảo bảo bối - Toán lớp 8 - Học toán với OnlineMath

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

9 tháng 2 2018

A A B B C C M M D D E E F F N N F' F'

a) Em tham khảo tại đây.

b) Trên tia đối tia FD, lấy điểm F' sao cho FF' = DE

Theo câu a ta có DF' = 2AM   (1)

Lại có tứ giác ANDM có AN // DM, AM // DN nên ANDM là hình bình hành.

Vậy nên AM = ND (2)

Từ (1) và (2) suy ra NF' = ND

Lại có F'F = DE nên FN = EN hay N là trung điểm EF.

c) Ta có \(S^2_{FDC}\ge16S_{AMC}.S_{FNA}\Leftrightarrow\frac{S_{AMC}}{S_{FDC}}.\frac{S_{FNA}}{S_{FDC}}\le\frac{1}{16}\)

Ta thấy \(\frac{S_{AMC}}{S_{FDC}}=\left(\frac{MC}{DC}\right)^2;\frac{S_{FNA}}{S_{FDC}}=\left(\frac{AF}{FC}\right)^2\)

nên ta cần chứng minh \(\frac{MC}{DC}.\frac{AF}{FC}\le\frac{1}{4}\Rightarrow\frac{MC}{DC}.\left(1-\frac{AC}{FC}\right)\le\frac{1}{4}\)

\(\Rightarrow\frac{MC}{DC}.\left(1-\frac{MC}{DC}\right)\le\frac{1}{4}\)

Đặt \(\frac{MC}{DC}=x\Rightarrow x\left(1-x\right)=-x^2+x=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)

Vậy ta đã chứng minh xong.

bạn chỉ mk cach viết phần trăm vs

22 tháng 6 2016

Giúp mình vói, mình cần gấp nha m.n, cảm ơn m.n nhiều