Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n là số lẻ thì n + 20172018 là số chẵn
Suy ra .............
Với n là số chẵn thì n + 20182017 là số chẵn
Suy ra ............
Vậy ..............
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
1. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath
TH1: với n<2018 ta có :
\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)
=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên
TH2 : với \(n\ge2018\)
=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)
Ta có : Vế trái \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2
Mà Vế phải 2(n-2018) luôn chia hết cho 2
=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại
Đặt biểu thức là A
+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+, Nếu n lẻ
(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2
Với mọi n thuộc N thì A chia hết cho 2
đợi mk xíu