K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Đặt biểu thức là A

+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2

+, Nếu n lẻ 

(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2

Với mọi n thuộc N thì A chia hết cho 2

15 tháng 10 2017

đợi mk xíu

27 tháng 8 2017

Với n là số lẻ thì n + 20172018 là số chẵn

Suy ra .............

Với n là số chẵn thì n + 20182017 là số chẵn 

Suy ra ............

Vậy ..............

27 tháng 8 2017

tớ chẳng hiểu gì

11 tháng 12 2017

Vì đề con viết thiếu nên cô đã sửa nhé.

Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)

\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)

\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)

\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)

\(\Rightarrow3S=1+2^{2018}-2^{2019}\)

\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)

9 tháng 12 2019

1. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

8 tháng 4 2018

TH1: với n<2018 ta có : 

\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)

=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên 

TH2 : với \(n\ge2018\)

=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)

Ta có : Vế trái  \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2 

Mà Vế phải 2(n-2018) luôn chia hết cho 2 

=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại 

8 tháng 4 2018

thanks bn nha