Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + 34 + 35 + ........ + 313 + 314 + 315
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ..... + (312 + 313 + 314 + 315)
A = (1 + 3 + 9 + 27) + 34.(1 + 3 + 9 + 27) + ........ + 312.(1 + 3 + 9 + 27)
A = 40.1 + 34.40 + ...... + 312.40
A = 40.(1 + 34 + .....+ 312)
A = 5.8.(1 + 34 + .....+ 312)
=> A chia hết cho 5
A=1+(3+32+33)+3^3(1+3+32+33)+...+312(1+3+32+33)
A=40+33.40+...+312.40
A=40(1+33+...+312) chia hết cho 40
Suy ra:A chia hết cho 5 ( vì 40 chia hết cho 5)
Kết bạn với mình nha!!!!!!!!!
\(c,\text{Đ}\text{ặt}:A=5+5^2+5^3+...+5^{96}\)
\(A=\left(5+5^2+5^3\right)+....+\left(5^{94}+5^{95}+5^{96}\right)\)
\(A=5\left(1+5+5^2\right)+...+5^{94}\left(1+5+5^2\right)\)
\(A=5.126+...+5^{94}.126\)
\(A=126\left(5+5^4+...+5^{94}\right)\)
\(M\text{à}:A=126\left(5+5^4+...+5^{94}\right)⋮126\)
\(\Rightarrow5+5^2+5^3+...+5^{96}⋮126\)
Ta thấy A có: (2016-1)÷1+1=2016
Nhóm 2 số vào 1 nhóm ta dc:2016:2=1008
A=(2+2^2)+(2^3+2^4)+....+(2^2015+2^2016)
A=2.(1+2)+2^3.(1+2)+...+2^2015.(1+2)
A=2.3+2^3.3+.....+2^2015.3
A=3.(2+2^3+.....+2^2015)÷3
Vì 3÷3 nên 3.(2+2^3+....+2^2015) chia hết cho 3
Vậy A chia hết cho 3
Ý khác làm tương tự nha
\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)
Vậy \(A⋮18\)
\(B=1+3+3^2+...+3^{11}\)
Ta có: \(52=4\cdot13\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)
Vậy \(B⋮4\)
\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)
Vậy \(B⋮13\)
Vì \(4\) và \(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)
Vậy \(B⋮52\)
\(C=3+3^3+3^5+...3^{31}\)
\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)
Vậy \(C⋮15\)
\(D=2+2^2+2^3+...+2^{60}\)
Tao có: \(21=3\cdot7;15=3\cdot5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(D⋮3\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)
Vậy \(D⋮5\)
\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)
Ta có:
\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)
\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)
Vậy \(D⋮15;D⋮21\)
Mình chỉ làm mẫu 1 câu thui nha:
\(A=17^{18}-17^{16}\)
\(A=17^{16}.17^2-17^{16}.1\)
\(A=17^{16}\left(17^2-1\right)\)
\(A=17^{16}.288\)
\(A=17^{16}.16.18\)
\(A⋮18\left(đpcm\right)\)
Ta có: \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)\)
\(=3.\left(1+3\right)+3^3.\left(1+3\right)+3^5.\left(1+3\right)\)
\(=3.4+3^3.4+3^5.4\)
\(=4.\left(3+3^3+3^5\right)\) chia hết cho 4
=> S chia hết cho 4 (đpcm).