K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Mình nghĩ phải là \(\frac{1}{2^2}\) mới đúng >.< 

Ta có : 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Chúc bạn học tốt ~ 

26 tháng 3 2018

đề bài sai rồi nha bạn

Phải là 1/2^2+1/3^2+...+1/100^2 < 1 chứ

20 tháng 3 2016

nhanh giúp mình

18 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

18 tháng 4 2018

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có

\(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>A< \frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

<=>\(A< \frac{1}{2}+\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

<=>\(A< \frac{1}{2}+\left(\frac{1}{2}-\frac{1}{100}\right)\)

<=>\(A< \frac{1}{2}+\frac{49}{100}\)

<=>\(A< \frac{99}{100}< 1\left(\text{Đ}pcm\right)\)

7 tháng 8 2018

buổi đêm đăng câu hỏi , cần gấp , lamf đúng , trình bày , đào đâu ra

18 tháng 5 2017

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

Mà \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)

27 tháng 4 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

=> Điều phải chứng minh

28 tháng 4 2017

cảm ơn lê minh anh (arigatougozaimasu)

7 tháng 5 2018

a) Gọi d là ƯCLN (12n+1;30n+2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

b) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)

7 tháng 5 2018

a) Giả sử: 12n+1 / 30n+2 = d , ta có : (12n+1) chia hết d và (30n+2) chia hết cho d

Suy ra :[ 30(12n+1) / 12(30n+2) ] 

[ 5 (12+1) / 2 ( 30n+2) ] suy ra : (60n+5)-(60n+4) chia hết cho d hay chia hết cho 1

vậy 12n+1 / 30n+2 là phân số tối giản với mọi n thuộc Z

B) 1/22+1/32+1/42+...+1/1002

< 1/1x2 +1/2x3 +1/3x4 +...+ 1/99x100

< 1/1 - 1/2 + 1/2 -1/3 +1/3 -1/4 +...+1/99 - 1/100

< 1 - 1/100 = 99 / 100 

Vì 99 /100 < 1 nên 1/22 + 1/32 + 1/42+...+ 1/1002 <1