\(\dfrac{2013}{2013+2014}+\dfrac{2014}{2014+2015}+\dfrac{2015}{2015+20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2024

a/ Đặt vế trái là A ta có

\(A< \dfrac{2013}{2013+2013}+\dfrac{2014}{2014+2014}+\dfrac{2015}{2015+2015}+\dfrac{2016}{2016+2016}=\)

\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

b/

b/

\(2015^{2016}+2015^{2015}=2015^{2015}\left(2015+1\right)=2016.2015^{2015}\)

\(2016^{2016}=2016.2016^{2015}\)

Ta thấy \(2015^{2015}< 2016^{2015}\Rightarrow2016.2015^{2015}< 2016.2016^{2015}\)

\(\Rightarrow2015^{2016}+2015^{2015}< 2016^{2016}\)

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

14 tháng 1 2024

loading... 

14 tháng 1 2024

đến đó bạn tự so sánh nh

3 tháng 3 2016

de ot la dau = nha

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)

--------------------------

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)

\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)

Vậy ta có đpcm.

26 tháng 4 2018

please help me

10 tháng 3 2017

Ta có :

\(2017A=\dfrac{2017\left(2017^{2015}+1\right)}{2017^{2016}+1}\)

\(=\dfrac{2017^{2016}+2017}{2017^{2016}+1}\)

\(=\dfrac{\left(2017^{2016}+1\right)+2016}{2017^{2016}+1}\)

\(=\dfrac{2017^{2016}+1}{2017^{2016}+1}\) + \(\dfrac{2016}{2017^{2016}+1}\)

\(=1+\dfrac{2016}{2017^{2016}+1}\) (1)

Tương tự :

\(2017B=\dfrac{2017\left(2017^{2014}+1\right)}{2017^{2015}+1}\)

\(=\dfrac{2017^{2015}+2017}{2017^{2015}+1}\)

\(=1+\dfrac{2016}{2017^{2016}+1}\) (2)

Từ (1) và (2) => \(2017A< 2017B\)

=> \(A< B\)

20 tháng 4 2018

Phân tích từ B ra, ta có:

B=\(\dfrac{2015+2016}{2016+2017}\)=\(\dfrac{2015}{2016+2017}\)+\(\dfrac{2016}{2016+2017}\)

\(\dfrac{2015}{2016+2017}\)<\(\dfrac{2015}{2016}\) ; \(\dfrac{2016}{2016+2017}\) < \(\dfrac{2016}{2017}\)

=> B < A

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017