Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)
Tương tự cộng theo vế suy ra đpcm
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Lời giải:
Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)
\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)
\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)
\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)
--------------------------
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)
\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)
\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)
\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)
\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)
Vậy ta có đpcm.
Ta có :
\(2017A=\dfrac{2017\left(2017^{2015}+1\right)}{2017^{2016}+1}\)
\(=\dfrac{2017^{2016}+2017}{2017^{2016}+1}\)
\(=\dfrac{\left(2017^{2016}+1\right)+2016}{2017^{2016}+1}\)
\(=\dfrac{2017^{2016}+1}{2017^{2016}+1}\) + \(\dfrac{2016}{2017^{2016}+1}\)
\(=1+\dfrac{2016}{2017^{2016}+1}\) (1)
Tương tự :
\(2017B=\dfrac{2017\left(2017^{2014}+1\right)}{2017^{2015}+1}\)
\(=\dfrac{2017^{2015}+2017}{2017^{2015}+1}\)
\(=1+\dfrac{2016}{2017^{2016}+1}\) (2)
Từ (1) và (2) => \(2017A< 2017B\)
=> \(A< B\)
Phân tích từ B ra, ta có:
B=\(\dfrac{2015+2016}{2016+2017}\)=\(\dfrac{2015}{2016+2017}\)+\(\dfrac{2016}{2016+2017}\)
Vì \(\dfrac{2015}{2016+2017}\)<\(\dfrac{2015}{2016}\) ; \(\dfrac{2016}{2016+2017}\) < \(\dfrac{2016}{2017}\)
=> B < A
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
a/ Đặt vế trái là A ta có
\(A< \dfrac{2013}{2013+2013}+\dfrac{2014}{2014+2014}+\dfrac{2015}{2015+2015}+\dfrac{2016}{2016+2016}=\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
b/
b/
\(2015^{2016}+2015^{2015}=2015^{2015}\left(2015+1\right)=2016.2015^{2015}\)
\(2016^{2016}=2016.2016^{2015}\)
Ta thấy \(2015^{2015}< 2016^{2015}\Rightarrow2016.2015^{2015}< 2016.2016^{2015}\)
\(\Rightarrow2015^{2016}+2015^{2015}< 2016^{2016}\)