Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=2 và y=-3 vào (d), ta được:
10-4m=-3
hay m=13/4
\(a,\Leftrightarrow2\left(4a-1\right)=6\Leftrightarrow4a-1=3\Leftrightarrow a=1\\ b,\text{Gọi }y=ax+b\text{ là đt đi qua }M,N\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-\dfrac{1}{3}a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=0\end{matrix}\right.\Leftrightarrow y=-3x\\ \text{Thay }x=-\dfrac{1}{3};y=-1\Leftrightarrow-1=-3\left(-\dfrac{1}{3}\right)=1\left(\text{vô lí}\right)\\ \Leftrightarrow P\notin y=-3x\\ \text{Thay }x=-\dfrac{1}{2};y=1,5=\dfrac{3}{2}\Leftrightarrow\dfrac{3}{2}=\left(-3\right)\left(-\dfrac{1}{2}\right)=\dfrac{3}{2}\left(\text{nhận}\right)\\ \Leftrightarrow Q\in y=-3x\)
Vậy M,N,Q thẳng hàng
+ Cho đồ thị hàm số: y=-1.x (a=-1)
Cho: x= 1 => y =1.-1=1
Ta được điểm B là đồ thị hàm số đã cho.
+ Cho đồ thị hàm số: y=3/2.x (a=3/2)
Cho: x= 2 => y =3/2.2=3
Ta được điểm B là đồ thị hàm số đã cho.
(có thể thay x thành số bất kì)
các phép sau làm tương tự chỉ cần tahy x cho phù hợp
Lời giải:
Gọi PT đường thẳng $AB$ là: \(y=ax+b\)
Ta có: \(\left\{\begin{matrix} -2=a.1+b\\ -4=a.2+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=-2\\ b=0\end{matrix}\right.\)
\(\Rightarrow y=-2x\)
Xét điểm O(0;0) thấy \(0=-2.0\Rightarrow O\in (AB)\)
Do đó O,A,B thẳng hàng
b) Gọi phương trình đường thẳng AB là: \(y=ax+b\)
\(\Rightarrow \left\{\begin{matrix} 3=a.1+b\\ -6=a(-2)+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=0\end{matrix}\right.\)
\(\Rightarrow y=3x\)
Xét điểm O(0;0) có \(0=3.0\Rightarrow O\in (AB)\)
Xét điểm C(-1;-3) có \(-3=3.(-1)\Rightarrow C\in (AB)\)
Do đó O, A, B, C thẳng hàng.
\(\overrightarrow{AB}=\left(-9;5\right)\)
\(\overrightarrow{AC}=\left(-\dfrac{9}{4};\dfrac{1}{2}\right)\)
Vì \(\overrightarrow{AB}=k\cdot\overrightarrow{AC}\) nên A,B,C thẳng hàng
Lời giải:
a. Vì $M\in $ đths đã cho nên $y_M=ax_M$
Hay $3=a(-1)\Rightarrow a=-3$
b. Gọi đường thẳng $y=ax=-3x$ là $(d)$. Theo phần a thì $M\in (d)$
Vì $-6=-3.2$ hay $y_N=-3x_N$ nên $N\in (d)$
Vì $-1=-3.\frac{1}{3}$ hay $y_P=-3x_P$ nên $P\in (d)$
Vì $M,N,P$ đều thuộc $(d)$ nên $M,N,P$ thẳng hàng.
Đề A thuộc N
=> n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {1 ; 2 ; 4 }
do đó
\(\hept{\begin{cases}n+1=1\\n+1=2\\n+1=4\end{cases}\Rightarrow\hept{\begin{cases}n=0\in N\\n=1\in N\\n=3\in N\end{cases}\Rightarrow}n=\left\{0;1;3\right\}}\)
Bài 2
Kẻ từ 1 điểm đến 9 điểm còn lại ta tạo được 9 đường thẳng
Với 10 điểm như thế ta tạo được 10 . 9 = 90 đường thẳng
Vì mỗi đường thẳng được tính 2 lần
=> số đường thẳng tạo được là 90 : 2 = 45 đường thẳng
Bài 3
Ta có công thức sau
\(\frac{n.\left(n+1\right)}{2}\) Với n là số điểm đã cho trước
Ghép với đề toán đã cho ta có :
\(\frac{n.\left(n+1\right)}{2}=105\)
\(n.\left(n+1\right)=210\)
\(\Rightarrow n=14\)
khó quá