K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

Gọi dãy số lẻ liên tiếp là \(1;3;5;...;2k+1\)trong đó \(k\in N\)*.

Số các số hạng :

\(\frac{\left(2k+1\right)-1}{2}+1=\frac{2k}{2}+1=k+1\)(số )

Tổng là :

\(\frac{\left(k+1\right)\left[1+\left(2k+1\right)\right]}{2}\)

\(=\frac{\left(k+1\right)\left(2k+2\right)}{2}\)

\(=\left(k+1\right).\frac{2\left(k+1\right)}{2}\)

\(=\left(k+1\right)^2\)

Vậy ...

6 tháng 7 2016

Theo bài ra ta cần chứng minh tổng \(1+3+5+7+....+\left(2n-1\right)\) là SCP

Thật vậy,từ 1-> 2n-1 có: \(\frac{\left(2n-1\right)-1}{2}+1=\frac{2n-2}{2}+1=\frac{2n-2+2}{2}=\frac{2n}{2}=n\) (số hạng)

\(=>1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=\frac{2n.n}{2}=n^2\) là 1 SCP

Vậy ta có đpcm

6 tháng 7 2016

Ta có tổng các số lẻ liên tiếp từ 1 là: 1 + 3 + 5 + 7 + ... + 2n - 1

Số số hạng là:

( 2n - 1 - 1 ) : 2 + 1 = n

Vậy tổng là:

( 2n - 1 + 1 ) . n : 2 = 2n.n : 2 = n2 ( đpcm )

19 tháng 7 2016

đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà

19 tháng 7 2016

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

K nhak ^_^ ^_^ ^_^

7 tháng 10 2018

Khoảng cách giữa 2 số lẻ liên tiếp là 2

Số lẻ đầu tiên là 1 thì số lẻ thứ n là:

             \(1+\left(n-1\right).2=2n-1\)

Khi đó: tổng n STN lẻ liên tiếp kể từ 1 là:

      \(1+3+5+...+\left(2n-1\right)\)

\(=\left(1+2n-1\right).n:2\)

\(=2n^2:2=n^2\)

Vậy tổng của n STN lẻ liên tiếp là số chính phương.

Chúc em học tốt.

4 tháng 11 2015

Cau hoi tuong tu nhe 

Ban chi can doi so 5 thanh so 3 roi lam 

Tick nha

26 tháng 9 2017

Ơ , mình giải lộn nhỉ?

Giải

Số tự nhiên đầu có dạng: 2k + 1 , số tiếp theo dạng 2k + 2

Vậy tổng trên có dạng là:

2k + 1 + 2k + 2 = 4k + 3 = 3(k + 1) 

Vì 3(k + 1) là số lẻ

Ta có ĐPCM

26 tháng 9 2017

vào câu hỏi tương tự

28 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.