Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*)
\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\)(vơi n thuộc N, n khác 0) đều là phân số tối giản
Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).
Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d
Vậy d = 1
Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.
Gọi UCLN(n+2015,n+2016) = d
=>n+2015 chia hết cho d
=>n+2016 chia hết cho d
=>(n+2016) - (n+2015) chia hết cho d
Mà (n+2016) - (n+2015) = 1
=> 1 chia hết cho d
=>d=1 , -1
Có nghĩa là UCLN(n+2015,n+2016) = 1 , -1
Mà phân số tối giản là phân số có UCLN = 1 , -1
Vậy phân số \(\frac{n+2015}{n+2016}\) là phân số tối giản
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
gọi ƯCLN(2n+3;3n+5)=d
2n+3 chia hết cho d
=>6n+9 chia hết cho d
3n+5 chia hết cho d
=>6n+10 chia hết cho d
=>1 chia hết cho d
=>d=1
\(\Rightarrow\frac{2n+3}{3n+5}\)tối giản
Gọi ƯCLN(2n+3; 3n+5) là d. Ta có:
2n+3 chia hết cho d => 6n+9 chia hết cho d
3n+5 chia hết cho d =? 6n+10 chia hết cho d
=> 6n+10-(6n+9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(2n+3; 3n+5) = 1
=> \(\frac{2n+3}{3n+5}\)tối giản (đpcm)
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Gọi ƯCLN ( n+2015 ; n+2016 ) = d
=> n+2015 chia hết cho d; n+2016 chia hết cho d
=> ( n+2016 ) - ( n+2015 ) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ( n+2015 ; n+2016 ) = 1 => $\frac{n+2015}{n+2016}$ là PSTG ( ĐPCM )
Ta thấy : n là số tự nhiên (1)
Và : 2015;2016 là hai số tự nhiên liên tiếp (2)
Từ (1) (2) ta suy ra được n+2015 và n+2016 là hai số tự nhiên liên tiếp
Hai số tự nhiên liên tiếp khi viết dưới dạng phân số thì luôn luôn là phân số tối giản
Vậy: \(\frac{n+2015}{n+2016}\) là phân số tối giản