Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 7 + 72 + 73 + ... + 7201
= ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7200 + 7201 )
= ( 1 + 7 ) + 72 . ( 1 + 7 ) + ... + 7200 . ( 1 + 7 )
= 8 + 72 . 8 + ... + 7200 . 8
= 8 . ( 1 + 72 + ... + 7200 ) \(⋮\)8 ( đpcm )
Ta có 1+7=8 chia hết cho 8
Từ 7\(^2\) đến 7\(^{201}\) có (201-2):1 +1=200
Ta nhốm 4 số (7\(^2\)+7\(^3\)+7\(^4\)+7\(^5\))=19600 \(⋮\)8
Mà 200\(⋮\)4 các nhóm chia hết cho 4
\(\Rightarrow\) biểu thức chia hết cho 8
a) \(7^{15}-7^{14}=7^{14}.7^1-7^{14}.1=7^{14}.\left(7-1\right)=7^{14}.6⋮6\)( Vì \(6⋮6\))
=) \(7^{15}-7^{14}⋮6\left(Đpcm\right)\)
b) \(9^{20}-9^{18}=9^{18}.9^2-9^{18}.1=9^{18}.\left(9^2-1\right)=9^{18}.80⋮10\)( Vì \(80⋮10\))
=) \(9^{20}-9^{18}⋮10\left(Đpcm\right)\)
a) Ta có : \(7^{15}-7^{14}=7^{14}.\left(7-1\right)=7^{14}.6\)\(⋮6\)
=> \(7^{15}-7^{14}⋮6\)(đpcm)
Co 101 cap 2 so
(1+7)+(7^2+7^3)+...+(7^200+7^201)
(1+7)+7^2(1+7)+...+7^200(1+7)
8+7^2*8+...+7^200*8
8*(1+7^2+...+7^200
Nho cho to nhe!!!!!!!!!
Trả lời :
Bn tham khảo link này :
Câu hỏi của Linh Chi - Toán lớp 6 - Học toán với OnlineMath
\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{16}.30\)
\(A=30.\left(1+...+2^{16}\right)⋮5\)
B tương tự ( 57=3.19)
cm tổng đó chia hết cho 3 và 19 là đc =)
Đặt A = 1 + 7 + 72 + ... + 798
=> A = 70 + 71 + 72 + ... + 798
=> A = ( 70 + 71 + 72 ) + ( 73 + 74 + 75 ) + ... + ( 796 + 797 + 798 )
=> A = 70 . ( 70 + 71 + 72 ) + 73 . ( 70 + 71 + 72 ) + ... + 796 . ( 70 + 71 + 72 )
=> A = 70 . 57 + 73 . 57 + ... + 796 . 57
=> A = 57 . ( 70 + 73 + ... + 796 ) \(⋮\)57
Đặt S = \(1+7+7^2+..........+7^{98}\)
\(\Rightarrow S=7^0+7^1+7^2+.............+7^{98}\)
\(\Rightarrow S=\left(7^0+7^1+7^2\right)+\left(7^3+7^4+7^5\right)+..........+\left(7^{96}+7^{97}+7^{98}\right)\)
\(\Rightarrow S=7^0.\left(7^0+7^1+7^2\right)+7^3.\left(7^0+7^1+7^2\right)+............+7^{96}.\left(7^0+7^1+7^2\right)\)
\(\Rightarrow S=7^0.57+7^3.57+..........+7^{98}.57\)
\(\Rightarrow S=57.\left(7^0+7^3+.........+7^{98}\right)\)
Mà 57 \(⋮\)57 \(\Rightarrow57.\left(7^0+7^3+..........+7^{98}\right)⋮57\)
Vậy tổng S chia hết cho 57