Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{20}{-18}=\dfrac{-10}{9}\) là số hữu tỉ
b: \(=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\dfrac{24}{2}=12\) là số hữu tỉ
a: \(=\left(2\sqrt{7}+\sqrt{7}+2\sqrt{14}\right)\cdot\sqrt{7}-\left(51+14\sqrt{2}\right)\)
\(=3\sqrt{7}\cdot\sqrt{7}+2\sqrt{14}\cdot\sqrt{7}-51-14\sqrt{2}\)
\(=21-51=-30\)
b: \(=\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{10}-\sqrt{6}}{2}=\dfrac{2\sqrt{10}-\sqrt{6}}{2}\)
c: \(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\sqrt{5}+\sqrt{3}}+\dfrac{\left(\sqrt{5}-\sqrt{2}\right)^2}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{2}\)
\(=2\sqrt{5}+\sqrt{3}-\sqrt{2}\)
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
a) \(\dfrac{\sqrt{7}+5}{\sqrt{7}-5}+\dfrac{\sqrt{7}-5}{\sqrt{7}+5}\)
\(=\dfrac{\left(\sqrt{7}+5\right)^2}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}+\dfrac{\left(\sqrt{7}-5\right)^2}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}\)
\(=\dfrac{\left(\sqrt{7}+5\right)^2+\left(\sqrt{7}-5\right)^2}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}\)
\(=\dfrac{\left(7+10\sqrt{7}+25\right)+\left(7-10\sqrt{7}+25\right)}{7-25}\)
\(=\dfrac{14+50}{7-25}\)
\(=\dfrac{64}{-18}\)
\(=\dfrac{-32}{9}\)
b) \(\sqrt{12}+\sqrt{48}-\sqrt{\left(\sqrt{75}-\sqrt{108}\right)^2}\)
\(=\sqrt{12}+\sqrt{48}-\left|\sqrt{75}-\sqrt{108}\right|\)
\(=\sqrt{12}+\sqrt{48}-\left(\sqrt{108}-\sqrt{75}\right)\) ( Vì \(\sqrt{75}< \sqrt{108}\) )
\(=\sqrt{12}+\sqrt{48}-\sqrt{108}+\sqrt{75}\)
\(=2\sqrt{3}+4\sqrt{3}-6\sqrt{3}+5\sqrt{3}\)
\(=5\sqrt{3}\)
a)\(\dfrac{\sqrt{7}+5+\sqrt{7}-5}{\sqrt{7}-5}=\dfrac{2\sqrt{7}}{\sqrt{7}-5}=\dfrac{-7-5\sqrt{7}}{9}\approx-2,25\)
a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{-20}{18}=\dfrac{-10}{9}\)
b: \(=\dfrac{7+10\sqrt{7}+25+7-10\sqrt{7}+25}{-18}\)
\(=\dfrac{64}{-18}=\dfrac{-32}{9}\)
Bài 1:
a: \(=\sqrt{7}-2+2=\sqrt{7}\)
b: \(=\left(5\sqrt{5}-3\sqrt{3}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{8+\sqrt{15}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(8+\sqrt{15}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)}{8+\sqrt{15}}\)
=5-3=2
a: \(B=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}-\dfrac{5}{2}\)
=12-5/2
=9,5
b: \(=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+4-2\sqrt{5}+4}{1}=8\)
a/ \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}=\dfrac{2\left(\sqrt{7}+5\right)}{-18}-\dfrac{2\left(\sqrt{7}-5\right)}{-18}=\dfrac{-\sqrt{7}-5+\sqrt{7}-5}{9}=\dfrac{-10}{9}\)
--> biểu thức trên là số hữu tỉ (đpcm)
b/ \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2}{2}+\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}=\dfrac{24}{2}=12\)
--> biểu thức trên là số hữu tỉ (đpcm)