\(\frac{2}{\left(n-1\right)\cdot n\left(n+1\right)}=\frac{1}{n\cdot\left(n-1\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

VP:

\(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\)

\(=\frac{n\left(n+1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}-\frac{n\left(n-1\right)}{\left[n\left(n-1\right)\right]\left[n\left(n+1\right)\right]}\)

\(=\frac{n^2+n}{\left(n^2-n\right)\left(n^2+n\right)}-\frac{n^2-n}{\left(n^2-n\right)\left(n^2+n\right)}\)

\(=\frac{\left(n^2+n\right)-\left(n^2-n\right)}{\left(n^4-n^3+n^3-n^2\right)-\left(n^4-n^3+n^3-n^2\right)}\)

\(=\frac{2n}{\left(n^4-n^2\right)-\left(n^4-n^2\right)}\)

\(=\frac{2n}{0}\)

Ủa! Hình như tớ lm sai ở đâu đó.

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

14 tháng 5 2019

\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)

\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)

\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)

14 tháng 5 2019

\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)

~ Hok tốt ~