K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

A B C H M N

a) Áp dụng hệ thức lượng ta có:

\(AM.AB=AH^2\)

\(AN.AC=AH^2\)

suy ra:   \(AM.AB=AN.AC\)

b)  \(cotC+cotB=\frac{HC}{AH}+\frac{BH}{AH}=\frac{BC}{AH}\)

Bài 2: 

Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)

Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)

8 tháng 7 2017

mk k chơi

ngọc rồng

ko đâu có đâu mà cho bn hehe

8 tháng 7 2017

Câu 1

Giả sử \(\sqrt{7}\) là số hữu tỉ => \(\sqrt{7}=\frac{a}{b}\) với a/b là phân số tối giản và a,b\(\in Z,b\ne0\)

\(\frac{a}{b}=\sqrt{7}\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 

mà 7 là số nguyên tố nên  a=7m => (7m)2=7b2 => 49m2=7b2 => 7m2=b2 => b2 chia hết cho 7

=> b chia hết cho 7 

Do đó a và b vẫn có ước chung là 7 suy ra phân số a/b chưa tối giản trái với giả thiết đưa ra

=>\(\sqrt{7}\) là số vô tỉ

8 tháng 7 2017

Câu 2: 

a)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2\left(c^2+d^2\right)+b^2\left(d^2+c^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

ta có đpcm

b) \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

<=>\(a^2c^2+2abcd+b^2d^2-a^2c^2-b^2c^2-a^2d^2-b^2d^2\le0\Leftrightarrow2abcd-b^2c^2-a^2d^2\le0\)

<=>\(-\left(a^2d^2-2abcd+b^2c^2\right)\le0\Leftrightarrow-\left(ad-bc\right)^2\le0\) luôn đúng!

Câu 3: Áp dụng bđt Bunhiacopxki ta được: \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\)

<=>\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\Leftrightarrow2^2\le2\left(x^2+y^2\right)\Leftrightarrow2\le x^2+y^2=S\)

=>minS=2 <=> x=y=1