K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

tìm trc khi hỏi Câu hỏi của Nguyễn Thúy Hường - Toán lớp 8 - Học toán với OnlineMath

5 tháng 1 2017

x^5+y^5 >= x^4y+xy^4

<=>x^5+y^5-x^4y-xy^4 >= 0

<=>x^4(x-y)-y^4(x-y) >= 0

<=>(x-y)(x^4-y^4) >= 0

<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0

<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)

Vậy bđt đầu là đúng

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

16 tháng 4 2019

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

16 tháng 4 2019

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
 

2 tháng 8 2019

từ bt trên ta đc

B=(xy)^2+x^2+y^2+1-x^2-y^2+25+16

B=(xy)^2+42

mà (xy)^2>=0

suy ra (xy)^2+42>=42

suy ra B >=42

dấu = xảy ra khi x=0 hoặc y=0

9 tháng 2 2020

\(x^2+y^2+1\ge xy+x+y\\ \Leftrightarrow2x^2+2x^2+2\ge2xy+2y+2y\\ \Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\\ \Leftrightarrow x^2+x^2+y^2+y^2+1+1-2xy-2x-2y\ge0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\left(true\right)\)

\(\Rightarrow x^2+y^2+1\ge xy+x+y\) luôn đúng với mọi x;y

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

22 tháng 3 2020

Sửa đề :Chứng minh hằng đẳng thức: ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5

Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y

            = x ( x4 + x3y + x2y2 + xy3 + y) - y ( x4 + x3y + x2y2 + xy3 + y

            = x5 + x4y + x3y2 + x2y+ xy4 - x4y -  x3y2 - x2y3 -  xy4 - y5

            = x5 - y5

\(\implies\) ( x - y ) ( x4 + x3y + x2y2 + xy3 + y) = x5 - y5 ( đpcm )

4 tháng 4 2020

ta có : ( x - y ) ( x4 + x3y + x2y+xy3+ y4 )

=  x (  x4 + x3y +  x2y2 + xy + y) - y (   x4 + x3y +  x2y2 + xy + y)

= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x2y3 = xy4 - y5

= x5 - y5

=> ( x - y ) ( x4 + x3y + x2y2 + xy3  + y4 )  = x5 - y5  ( đpcm )

đề hơi sai nha bạn 

19 tháng 10 2016

<=>Nhân 2 chuyển vế gom bình phương được

(x-y)^2+(x-1)^2+(y-1)^2>=0 

tổng 3 số ko âm >=0