Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số đó lần lượt là a ; b (a,b \(\inℤ\))
Xét hiệu (a3 + b3) - (a + b)
= (a3 - a) + (b3 - b)
= a(a2 - 1) + b(b2 - 1)
= (a - 1)a(a + 1) + (b - 1)b(b + 1)
Vì a ; b \(\inℤ\)=> (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp
=> Tồn tại 1 số chia hết cho 2 và 3 , mà (2,3) = 1
=> (a - 1)a(a + 1) \(⋮\)6
Tương tự (b - 1)b(b + 1) \(⋮\)6
=> (a3 + b3) - (a + b) \(⋮\)6
=> ĐPCM
3 số đó là:
6a+6b+6c
ta có (6a)3+(6b)3+(6c)3
=216a3+216b3+216c3
=6(36a3+36b3+36c3)
=>6(36a3+36b3+36c3) chia hết cho 6 =>(6a)3+(6b)3+(6c)3 chia hết cho 6
=> ĐPCM
có a^3 + b^3 + c^3 chia hết cho 9 (1)
giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )
=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1
do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )
=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )
=> 1 trong 3 số a, b, c, là bội của 3