K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Đặt \(B=a_1+a_2+...+a_{2016}\)

\(\Rightarrow A-B=\left(a_1^3+a_2^3+...+a_{2016}^3\right)-\left(a_1+a_2+....+a_{2016}\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2016}^3-a_{2016}\right)\)

\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_{2016}-1\right)a_{2016}\left(a_{2016}+1\right)⋮6\)

\(B⋮6\Rightarrow A⋮6\)

27 tháng 8 2017

Bài 1:

a, Ta có: \(3^3\equiv-1\left(mod28\right)\)

\(\Rightarrow3^{1179}\equiv-1\left(mod28\right)\)

\(\Rightarrow3^{1181}\equiv-9\left(mod28\right)\)

Vậy \(3^{1181}\) chia 28 dư -9

Bài 2:

\(2^5\equiv1\left(mod31\right)\)

\(\Rightarrow2^{2000}\equiv1\left(mod31\right)\)

\(\Rightarrow2^{2002}\equiv4\left(mod31\right)\)

\(\Rightarrow2^{2002}-4⋮31\)

27 tháng 8 2017

*Cảm ơn cậu đã giải!

-Nhưng cho tớ hỏi nếu thay đổi 31181 :29 thì kết quả ra sao? Hay vẫn giữ nguyên?

- Cái chỗ 3³=-1

nhưng khi bấm máy là 3³:R29=R=27 mà

28 tháng 2 2019
Từ giả thiết suy ra \((a+b-c)(a+b+c)=2ab\) Nếu \(a+b+c\) lẻ thì suy ra \(2ab\) chia hết cho \(a+b+c\). Mà \((2,a+b+c)=1\) nên \(ab\) chia hết cho \(a+b+c\) Nếu \(a+b+c\) chẵn suy ra\( a+b-c\) chẵn. Suy ra \(ab=k(a+b+c)\) nên \(ab\) chia hết cho \(a+b+c\)
25 tháng 7 2015

Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)

Ta có;

\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)

=> \(\frac{ad+bc}{bd}=m\)

=> ad + bc = mbd (10

Từ (1) => ad + bc chia hết cho b 

Mà bc chia hết cho b 

=> ad chia hết cho b

Mà (a,b) = 1

=> d chia hết cho b (2)

Từ (1) => ad + bc chia hết cho d 

Mà ad chia hết cho d 

=> bc chia hết cho d

Mà (c,d) = 1

=> b chia hết cho d (3)

Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)