Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
t8-t2+ \(\frac{1}{2}\)=t8 - t4+ \(\frac{1}{4}\) + t4-t2+\(\frac{1}{4}\) = (t4 -\(\frac{1}{2}\) )2 + (t2-\(\frac{1}{2}\))2 luôn lớn hơn không do t4-1/2 khác t2-1/2 nên cả hai không thể đồng thời bằng 0
Câu 2:
\(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{6bc+3ac+2ab}{6abc}=0\)
=> 6bc+3ac+2ab=0
Có a+2b+3c=1=> (a+2b+3c)2=0=>a2+4b2+9c2+2(6bc+3ac+2ab)=1
=> a2+4b2+9c2 =1
Ta có:
y02 + ay0 + b = 0
\(\Leftrightarrow\)y04 = (ay0 + b)2
\(\le\)(a2 + b2)(y02 + 1)
\(\Rightarrow\)y04 - 1 < (a2 + b2)(y02 + 1)
\(\Rightarrow\)y02 - 1 < a2 + b2
\(\Rightarrow\)y02 < 1 + a2 + b2
3/ Dễ thấy \(0\le x,y,z\le1\)
Ta có:
x2 + y2 + z2 = x3 + y3 + z3
\(\Leftrightarrow\)x2(1 - x) + y2(1 - y) + z2(1 - z) = 0
Dấu = xảy ra khi (x, y, z) = (0,0,1) và các hoán vị của nó