K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)

\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

5 tháng 11 2017

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)

\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)

2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)

3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)

\(=\dfrac{x+y+z}{2}\)

6 tháng 11 2017

\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)

\(VT=\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

\(=\dfrac{2x^2+2xy+xy+y^2}{\left(2x^3+x^2y\right)+\left(-2xy^2-y^3\right)}\)

\(=\dfrac{\left(2x^2+2xy\right)+\left(xy+y^2\right)}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)

\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)

\(=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)

13 tháng 11 2017

a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)+z\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y+z\right)}=\dfrac{x+y}{x+y+z}\)

b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{\left(x+y\right)^2-z^2}{\left(x-z\right)^2-y^2}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{\left(x-y-z\right)\left(x-z+y\right)}\)\(=\dfrac{x+y+z}{x-y-z}\)

c) \(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)

d) \(\dfrac{4x^2\left(x-2\right)+3\left(x-2\right)}{4x^2\left(3x+1\right)+3\left(3x+1\right)}=\dfrac{\left(x-2\right)\left(4x^2+3\right)}{\left(3x+1\right)\left(4x^2+3\right)}=\dfrac{x-2}{3x+1}\)

13 tháng 11 2017

a) áp dụng hằng đẳng thức

28 tháng 6 2017

Rút gọn phân thức

8 tháng 11 2017

\(\text{a) }\dfrac{x^2+2}{x^3-1}+\dfrac{x}{x^2+x+1}+\dfrac{1}{1-x}\\ =\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x}{x^2+x+1}-\dfrac{1}{x-1}\\ =\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\dfrac{\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{x^2+2+x\left(x-1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x^2+2+x^2-x-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x^2-2x+1}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{\left(x-1\right)^2}{\left(x^2+x+1\right)\left(x-1\right)}\\ =\dfrac{x-1}{x^2+x+1}\\ \)

\(\text{b) }\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\\ =\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{x\left(y-x\right)}\\ =\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\\ =\dfrac{x^2}{y\left(x-y\right)x}-\dfrac{\left(2x-y\right)y}{x\left(x-y\right)y}\\ =\dfrac{x^2-\left(2x-y\right)y}{xy\left(x-y\right)}\\ =\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\\ =\dfrac{\left(x-y\right)^2}{xy\left(x-y\right)}\\ =\dfrac{x-y}{xy}\)

7 tháng 11 2017

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

7 tháng 11 2017

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)

a: \(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{-\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{-3}{x-3}\)

b: \(=\dfrac{x+1}{x+2}:\left(\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)^2}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x^2+2xy+y^2}{2xy}\cdot\dfrac{xy}{x^2+y^2}\)

\(=\dfrac{2\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)^2}{x^2+y^2}\cdot\dfrac{1}{2}\)

\(=\dfrac{\left(x+y\right)}{x-y}\)