Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2018}{4^{2018}}+\frac{2019}{4^{2019}}\)
\(\Rightarrow4D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(\Rightarrow4D-D=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2018}{4^{2017}}+\frac{2019}{4^{2018}}\)
\(-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-\frac{4}{4^4}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=1+\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2018}}\right)-\frac{2019}{4^{2019}}\)
Đặt \(M=\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+\frac{1}{4^4}+...+\frac{1}{4^{2018}}\)
\(\Rightarrow4M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(\Rightarrow4M-M=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2017}}\)
\(-\frac{1}{4}-\frac{1}{4^2}-\frac{1}{4^3}-\frac{1}{4^4}-...-\frac{1}{4^{2018}}\)
\(\Rightarrow3M=1-\frac{1}{4^{2018}}\)
\(\Rightarrow M=\frac{1}{3}-\frac{1}{3.4^{2018}}\)
\(\Rightarrow3D=1+\frac{1}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}\)
\(\Rightarrow3D=\frac{4}{3}-\frac{1}{3.4^{2018}}-\frac{2019}{4^{2019}}< \frac{4}{3}\)
\(\Rightarrow D< \frac{4}{9}=\frac{40}{90}< \frac{45}{90}=\frac{1}{2}\left(đpcm\right)\)
ok, ta co \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{1}{4}\)
Lai co \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}\)
\(A>\frac{1}{6}\)
Đặt \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2018^2+2019^2}\)
\(2A=\frac{2}{1^2+2^2}+\frac{2}{2^2+3^2}+\frac{2}{3^2+4^2}+...+\frac{2}{2018^2+2019^2}\)
Có \(a^2+b^2\ge2ab\) ( Cosi cho 2 số dương )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
Mà 1;2;3;4;...;2019 là những số khác nhau nên dấu "=" không xảy ra
\(\Rightarrow\)\(2A< \frac{2}{2\left(1.2\right)}+\frac{2}{2\left(2.3\right)}+\frac{2}{2\left(3.4\right)}+...+\frac{2}{2\left(2018.2019\right)}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=1-\frac{1}{2019}< 1\)
\(\Rightarrow\)\(2A< 1\)\(\Rightarrow\)\(A< \frac{1}{2}\) ( đpcm )
...
a/
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(A=2A-A=1-\frac{1}{2^{100}}< 1\)
b/
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)
\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta có :
\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)
\(\Rightarrow\)\(A>\frac{1}{6}\) \(\left(1\right)\)
Lại có :
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
\(\Rightarrow\)\(A< \frac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{1}{6}< A< \frac{1}{4}\) ( đpcm )
Vậy \(\frac{1}{6}< A< \frac{1}{4}\)
Chúc bạn học tốt ~