Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)
\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1
Vậy với n>1 A không thể Cp
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
Quên cách làm thôi bn .. nếu bn bk thì giải ra đi
Ở đây là chỗ có thể đặt câu hỏi cũng như trả lời mak
Bạn vào liink này nha:https://olm.vn/hoi-dap/detail/11367472277.html
A=n6-n4+2n3+2n2
=n4(n2-1)+2n2(n+1)
=n2(n+1)(n3-n2+2)
=n2(n+1)[(n+1)(n2-2n+2)]
=n2(n+1)2(n2-2n+2)
=n2(n+1)2[(n-1)2+1]
Ta có:(n-1)2<(n-1)2+1=n2+2(1-n)<n2 (vì n>1)
=>(n-1)2+1 ko là SCP
=>A ko là SCP
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n−1)2+1]=y2
Muốn pt trên đúng thi (�−1)2+1(n−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
Ta có : \(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)
\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)
\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)
Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)