Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+22+23+...+260
A=(2+22+23)+...+(258+259+260)
A=12.1+...+257.(2+22+23)
A=12.1+...+257.12
A=12.(1+...+257)chia hết cho 3 vì 12 chia hết cho 3
tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13 .
Em copy của triều đặng
I = 1 + 3 + 32 + 33 + ... + 3119
=(1+3+32)+(33+34+35)+....+(3117+3118+3119)
=(1+3+32)+(1.33+3.33+32.33)+...(1.3117+3.3117+32.3117)
=13+33.(1+3+32)+...+3117.(1+3+32)
=13.1+33.13+...+3117.13
=13.(1+33+...+3117)
=> I chia hết cho 13
mấy câu kia tương tự
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
b=(3+32 )+(33+34 )+...(31990+31991)
=13+13.33+... + 13. 31990
41 tương tự nhá
a, Chứng minh rằng A chia hết cho 3
A = 2 + 22 + 23 + .....+ 260
A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )
A = 2(1+2 ) + 23(1+2) +,...+ 259(1+2)
A = 2.3 + 23.3 + ....+259.3
A = 3(2+23+....+259 ) \(⋮3\)
=> đpcm
chứng minh ằng A chia hết cho 7
A = 2+22 + 23 + .....+ 260
A = ( 2+22 + 23 ) + (24 + 25 + 26) + .... + (258+259+260)
A = 2(1+2 +22 ) +24 (1+2 +22 ) + .... +258(1+2 +22 )
A = 2.7 +24.7 + ....+258.7
A= 7(2+24 ....+258 )\(⋮7\)
=> đpcm
Chứng minh A chia hết cho 15
A = 2 + 22 + 23 + .....+ 260
A = ( 2 + 22 + 23 +24 ) +....+ (257 + 258 + 259 + 260 )
A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)
A = 2.15 + ....+ 257.15
A = 15.(2+...+257) \(⋮15\)
=> đpcm
b,
chứng minh chia hết cho 13
B= 3 + 33 + 35 + + ..........+ 31991
B = (3+33 + 35 ) + (37 + 39 +311 ) + ......+ (31987 + 31989 + 31991 )
B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )
B = 3.91 + 37.91 + ...+ 31987.91
B = 91(3+37 + ... 31987 )
B = 7.13.(3+37 + ... 31987 ) \(⋮13\)
=> đpcm
chứng minh chia hết cho 41
B = 3+33 + 35 + ...+ 31991
B = (3+33 + 35 + 37 ) + ...(31985 + 31987 + 31989 + 31991 )
B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)
B = 3. 820 + ...+ 31985.820
B = 820(3+...+31985)
B = 20.41 (3+...+31985) \(⋮41\)
=> đpcm