K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

a, Số dư luôn <3

16 tháng 7 2016

Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.

Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.

Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.

Bài toán được chứng minh.

16 tháng 7 2016

Xét p dưới dạng : 3k (khi đó p=3), 3k+1,3k+2(k∈N).

Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p−1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số.

31 tháng 7 2021

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

18 tháng 2 2023

Vì p là số nguyên tố , p > 3

nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\)  )

Với p = 3k + 1 

thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)

=> 8p2 + 1 là hơp số (loại)

Với p = 3q + 2 

8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)

=> p = 3q + 2 (loại) 

Vậy không tồn tại p để thỏa mãn điều kiện đề bài 

24 tháng 11 2016

p=2 thì 8p-1 = 15 => loại

p=3 thì 8p-1=23 ; 8p+1=25 là hợp số => chọn

p>3 thì p không chia hết cho 3

p chia 3 dư 2 thì 8p-1 chia hết cho 3 nên loại

=> p chia 3 dư 1 => 8p+1 chia hết cho 3 ; là hợp số

4 tháng 11 2021

Nếu    \(p=2\Rightarrow8p-1=15\)   là hợp số \(\left(ktm\right)\)

Nếu    \(p=3\Rightarrow8p-1=23\)là số nguyên tố và \(8p+1=25\)là hợp số \(\left(tm\right)\)

Nếu   \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\inℕ\right)\)

Với \(p=3k+1\left(k\inℕ\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)

và \(⋮3\)nên \(8p+1\)là hợp số

Với \(p=3k+2\left(k\inℕ\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( Vô lí )

Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố

30 tháng 3 2015

dem p chia cho 3 se co 3 kha nang xay ra ve so du. so du co the la 1 trong cac so 0,1,2

xet 3truong hop:...

3 tháng 8 2016

Bn thíu đìu kịn p > 3 nha

Xét 3 số tự nhiên liên tiếp: 8p - 1; 8p; 8p + 1, trong 3 số này có 1 số chia hết cho 3

Do p nguyên tố > 3 => p không chia hết cho 3 => 8p không chia hết cho 3 mà 8p - 1 nguyên tố > 3 => 8p - 1 không chia hết cho 3

=> 8p + 1 chia hết cho 3

Mà 1 < 3 < 8p + 1 => 8p + 1 là hợp số (đpcm)

13 tháng 8 2016

khong biet ^_^

3 tháng 5 2016

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa mãn

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số