K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
11 tháng 8 2020

Chứng minh nếu p và 8p^2+1 là hai số nguyên tố thì 8p^2-1 là số nguyên tố - Lê Bảo An 

Nếu không hiện ra thì vô tkhđ.

12 tháng 8 2020

ko cần đâu

18 tháng 2 2021

Hơi tricky :))

vì: \(\left(2;3\right)=1\text{ mà: }n>2\text{ nên: }\left(2^n,3\right)=1\)

Lại có nx sau: 

2^n-1;2^n;2^n +1 là 3 số tự nhiên liên tiếp nên tồn tại 1 số chia hết cho 3

mà số thứ 2;3 đều k chia hết cho 3 r nên: 

2^n-1 chia hết cho 3; >3 nên là hợp số

7 tháng 9 2021

P=p^2-q^2=(p^2-1)-(q^2-1)

Để cm P chia hết cho 24 thì cm P chia hết cho 3 và 8.

Cm chia hết cho 3

đặt p=3q+r(1<=r<=2). r=1=>p=3q+1

=>p-1=3q chia hết cho 3 r=2=>p=3q+2

=>p+1=3q+3 chia hết cho 3. => p^2-1 chia hết cho 3.

Chia hết cho 8 ta cm chia hết cho 2 và 4 giống kiểu ở trên ý bạn

Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24