K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

20 tháng 10 2019

Tiếp câu b nha

\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)

\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)

\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)

\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)

\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)

\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)

\(ƯC\left(3;5;8\right)=1\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Vậy A chia hết cho 120

20 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)=8\left(n+1\right)⋮8\forall n\in\mathbb{N}\) (đpcm)

b) Thử quy đồng hết lên đi (MSC = 12) rồi phân tích tiếp xem, đang bận ...

3 tháng 8 2016

a, \(2^{-1}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n.\frac{9}{2}=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

\(KL....\)

b, đề hơi sai pn ạ

c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55

d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)

\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)

\(\Rightarrow5A-A=5^{51}-1\)

\(\Rightarrow A=\frac{5^{51}-1}{4}\)

3 tháng 8 2016

a, 2−1.2n+4.2n=9.25

⇒2n.92 =288

⇒2n=64

⇒n=6

KL....

b, đề hơi sai pn ạ

c, 76+75−74=74(72+7−1)=74.55chia hết cho 55

d, A=1+5+52+53+...+549+550

⇒5A=5+52+53+54+...+550+551

⇒5A−A=551−1

⇒A=551−14 

15 tháng 2 2018

Ez nhé

\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)

           \(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)

Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)

27 tháng 10 2017

Bài 2:Tìm x biết

(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

26 tháng 7 2019

M bị phê đá à con

8 tháng 8 2018

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

19 tháng 9 2018

a,n(2n-3)-2n(n+1)

=2n2-3n-2n2-2n

=-5n⋮5

b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số liên tiếp

nên \(A⋮3!\)

hay A chia hết cho 6

1 tháng 11 2018

a) n^2.(n+1)+2n.(n+1)

= (n+1).(n^2+2n)

= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)

b) (2n-1)^3 - (2n-1)

= (2n-1).[(2n-1)^2 - 1]

= (2n-1).(2n-1-1).(2n-1+1)

= (2n-1).2.(n-1).2n

= 4.n.(n-1).(2n-1)

mà n.(n-1) là 2 số tự nhiên liên tiếp

=> n hoặc n - 1 sẽ chia hết cho 2

=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8

=> 4.n.(n-1).(2n-1) chia hết cho 8

=> (2n-1)^3 - (2n-1) chia hết cho 8

21 tháng 12 2018

a) (n + 2)2 - (n - 2)2

= (n + 2 - n + 2)(n + 2 + n - 2)

\(=8n⋮8(\forall n\in Z)\)

b) (n + 7)2 - (n - 5)2

= (n + 7 - n + 5)(n + 7 + n - 5)

= 12.(2n + 2)

= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)