Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
Gọi d là ƯCLN(n+3;3n+8)
Ta có n+3\(⋮\)d=>3*(n+3)\(⋮\)d=>3n+9\(⋮\)d
Ta có 3n+8\(⋮\)d
=>[(3n+9)-(3n+8)]\(⋮\)d
=>[3n+9-3n-8]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(n+3;3n+8)=1 nên phân số \(\frac{n+3}{3n+8}\) luôn tối giản(nEN)
Gọi d là ƯCLN(n+3;3n+8)
Ta có:n+3\(⋮\)d
3n+8\(⋮\)d\(\Rightarrow\)3(n+4)\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+2\(⋮\)d
\(\Rightarrow\)[n+3-n-2]\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Vậy ƯCLN(n+3;3n+8)là 1 nên phân số \(\frac{n+3}{3n+8}\) tối giản(n\(\in\)N)
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
Gọi d là ƯCLN(2n+5;n+2)
Ta có 2n+5\(⋮\)d
n+2\(⋮\)d=>2*(n+2)\(⋮\)d=>2n+4\(⋮\)d
=>[(2n+5)-(2n+4)]\(⋮\)d
=>[2n+5-2n-4]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(2n+5;n+2)=1 nên phân số \(\frac{2n+5}{n+2}\) luôn tối giản(nEN)
Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)
\(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)
\(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)
hay 1 : d => \(d\inƯ\left(1\right)\)
Mà Ư(1) = {-1;1} => d \(\in\){-1;1}
Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)
=> 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau
Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n
Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!
Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)
=> 5n+1 chia hết cho d; 20n+3 chia hết cho d
=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d
=> 20n+4 chia hết cho d; 20n+3 chia hết cho d
=> (20n+4) - (20n+3) chia hết cho d
=> 20n + 4 - 20n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(5n+1, 20n+3) = 1
=> phân số 5n+1/20n+3 tối giản (đpcm)
Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1
Ủng hộ mk nha ^_-
Gọi d là ƯCLN(2n-1;8n-3)
ta có 2n-1\(⋮\)d;8n-3\(⋮\)d
=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d
=>8n-4\(⋮\)d;8n-3\(⋮\)d
=>[(8n-4)-(8n-3)]\(⋮\)d
=>[8n-4-8n+3]\(⋮\)d
=>-1\(⋮\)d
=>d=1
Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)
Gọi d là UCLN(2n-1;8n-3)
=>2n-1 chia hết cho d và 8n-3 chia hết cho d
=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d
=>8n-4 chia hết cho d và 8n-3 chia hết cho d
=>8n-4-8n+3 chia hết cho d
=>-1 chia hết cho d =>d=1
=>điều phải chứng minh
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
Gọi d là ước chung lớn nhất của 5n + 1 và 20n + 3
\(\Rightarrow\)\(5n+1⋮d\); \(20n+3⋮d\)
\(\Rightarrow\)\(4.\left(5n+1\right)⋮d\); \(20n+3⋮d\)
\(\Leftrightarrow\)\(20n+4⋮d\); \(20n+3⋮d\)
\(\Rightarrow20n+4-\left(20n+3\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ nha !!!
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
a) d= ƯCLN (3n + 1; 5n + 2)
=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d
=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d
=> 15n + 6 và 15n + 5 chia hết cho d
=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1
=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)