K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

a) d= ƯCLN (3n + 1; 5n + 2)

=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d

=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d

=> 15n + 6 và 15n + 5 chia hết cho d

=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1

=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản

22 tháng 8 2015

b) d = ƯCLN (21n + 4; 14n + 3)

=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d

=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d

=> 42n + 8 và 42n + 9 chia hết cho d

=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1

=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản

 

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

Gọi d là ƯCLN(5n+2;3n+1)

Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d

=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d

=>15n+6\(⋮\)d;15n+5\(⋮\)d

=>[(15n+6)-(15n+5)]\(⋮\)d

=>[15n+6-15n-5]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)

 
DD
9 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\)

\(\Rightarrow d=1\).

Suy ra đpcm.

b) Đặt \(d=\left(n^3+3n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+3n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+3n\right)=1⋮d\)

\(\Rightarrow d=1\).

Suy ra đpcm.

17 tháng 3 2020

a,Gọi d là ƯCLN của tử và mẫu.Ta có

15n+1 chia hết cho d        =>30n+2 chia hết cho d

30n+1 chia hết cho d        =>30n+1 chia hết cho d

=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1

Vậy WCLN của phân số đó là 1(đpcm)

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).