Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^5+29a=a^5-a+30a\)
Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)
nên \(a^5+29a⋮30\) ( điều phải chứng minh )
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)
Ta thấy (1) chia hết cho 5 (2)
(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)
Ta chứng minh (1) chia hết cho 8
Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8
Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k2 + 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8
=> (1) chia hết cho 8 (4)
Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Ta có
n2 + n + 1=(n+2)(n−1)+3
Giả sử n2+n+1 chia het cho 9
=>(n+2)(n−1)+3 chia hết cho 3
=> (n+2)(n-1) chia hết cho 3
Mà (n+2)-(n-1)=3 chia hết cho 3
=>n+2 và n-1 cùng chia hết cho 3
=>(n+2)(n−1) chia hết cho 9
=>n2 + n + 1chia 9 dư 3
=>vô lý
=>đpcm
bai nay chi can tach ra thanh mot nhom chia het cho 5 roi suy ra mot nhom chia het cho 5 roi minh phan h a^4-b^4 thanh nhan tu
\(B=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
=> 2B = n ( n + 1 ) (I)
Ta có :
\(A=1^5+2^5+3^5+...+n^5\)
\(\Leftrightarrow2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+...+\left(1+n^5\right)\)
Nhận thấy mỗi số hạng đều chia hết cho n + 1 nên 2A chia hết cho n + 1 (1)
Ta lại có : \(2A-2n^5=\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^5+2^5\right]+...\)chia hết cho n
=> 2A chia hết cho n (2)
Từ (1) và (2) => 2A chia hết cho n ( n + 1 ) (II)
=> Từ (I) và (II) => đpcm
\(a^5+29a=a^5-a+30a\)
Ta có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) Ta có (a-1)a(a+1) là ba số nguyên liên tiếp nên (a-1)a(a+1)⋮3\(\Rightarrow\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)⋮3\)(1)
Ta lại có a5 có chữ số tận cùng là a\(\Rightarrow a^5-a\) sẽ có chữ số tận cùng là 0\(\Rightarrow a^5-a⋮10\left(2\right)\)
Mà (3;10)=1(3)
Từ (1),(2),(3)\(\Rightarrow a^5-a⋮30\)
Mà 30a\(⋮30\)
Vậy a5-a+30a\(⋮30\) hay \(a^5+29a⋮30\)