K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

 Từ x/2 = y/3 => x/10 = y/15 (1) 

Từ y/5 = z/4 => y/15 = z/12 (2) 

Từ (1) và (2) ta có: x/10 = y/15 = z/12 

Áp dụng t/c dãy tỷ số bằng nhau ta có: 

x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3 

Từ x/10 = 3 => x = 30 

Từ y/15 = 3 => y = 45 

Từ z/12 = 3 => z = 36 

6 tháng 1 2017

tách hết ra đk đấy

7 tháng 10 2015

4a2+3ab-11bchia hết cho 5 

=> (5a2 + 5ab - 10b2) - (4a+ 3ab - 11b2) chia hết cho 5

=> a+ 2ab + b2 chia hết cho 5

=> (a + b)2 chia hết cho 5

=> a + b chia hết cho 5  (vì 5 là số nguyên tố)

=> a4 - b= a+ b (a + b) (a - b) chia hết cho 5

7 tháng 10 2015

4a+ 3ab - 11bchia hết cho 5 => (5a2+5ab-10b2) chia hết cho 5

=> a+2ab+b2 chia hết cho 5 

=>  (a+b)2 chia hết cho 5

=>  a + b chia hết cho 5 (vì 5 là số nguyên tố)

=> a4-b4 =a2+b2(a+b)(a-b) chia hết cho 5

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

21 tháng 8 2019

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)

\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)

Mà (2;3)=1

=> \(n\left(n+1\right)\left(n+2\right)⋮6\)

=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Câu b em kiểm tra lại đề bài.

28 tháng 2 2019
Từ giả thiết suy ra \((a+b-c)(a+b+c)=2ab\) Nếu \(a+b+c\) lẻ thì suy ra \(2ab\) chia hết cho \(a+b+c\). Mà \((2,a+b+c)=1\) nên \(ab\) chia hết cho \(a+b+c\) Nếu \(a+b+c\) chẵn suy ra\( a+b-c\) chẵn. Suy ra \(ab=k(a+b+c)\) nên \(ab\) chia hết cho \(a+b+c\)