K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

\(\text{BĐT}\Leftrightarrow \left ( \frac{a^2}{b}-2a+b \right )+\left ( \frac{b^2}{c}-2b+c \right )+\left ( \frac{c^2}{a}-2c+a \right )\geq \frac{6(a^2+b^2+c^2)}{a+b+c}-2(a+b+c)\)

\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq \frac{2[(a-b)^2+(b-c)^2+(c-a)^2)]}{a+b+c}(1)\)

Do BĐT có tính hoán vị giữa các biến nên giả sử $b$ nằm giữa $a$ và $c$

Áp dụng BĐT Cauchy-Schwarz:

\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq \frac{[(a-b)+(b-c)+(a-c)]^2}{a+b+c}=\frac{4(a-c)^2}{a+b+c}(2)\)

Ta chỉ cần CM \(\frac{4(a-c)^2}{a+b+c}\geq \frac{2[(a-b)^2+(b-c)^2+(c-a)^2]}{a+b+c}(3)\Leftrightarrow (a-c)^2\geq (a-b)^2+(b-c)^2\)

\(\Leftrightarrow (b-a)(b-c)\leq 0\). Điều này luôn đúng với $b$ nằm giữa $a$ và $c$

Từ \((1);(2);(3)\Rightarrow \text{đpcm}\). Dấu $=$ xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Đặt \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b}\Rightarrow P+6=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{4(a+b+c)}{a+b}\)

Áp dụng BĐT Cauchy-Schwarz:

\(P+6\geq (a+b+c)\frac{(1+1+2)^2}{2(a+b+c)}=8\)

\(\Rightarrow P\geq 2\)

Dấu bằng xảy ra khi \(\frac{1}{b+c}=\frac{1}{c+a}=\frac{2}{a+b}\). Điều này không thể xảy ra do đó \(P>2\)

Ta có đpcm.

20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

9 tháng 12 2015

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

Vì 2ab < (a2 + b2) , 2ac < (a2 + c2) , 2bc < (b2 + c2)

Nên (a + b + c)2 <  a2 + b2 + c2 + (a2 + b2) +  (a2 + c2) +  (b2 + c2) = 3(a2 + b2 + c2)

 

27 tháng 4 2020

Ta thấy muốn loại bỏ đi mẫu số của \(\frac{a^2}{b+2c}\)thì cần dùng AM-GM cho nó và 1 đại lượng có dạng k(b+2c) (để triệt tiêu đi b+2c). Ngoài ra ta cần chú ý thêm BĐT đã cho có dấu "=" xảy ra <=> a=b=c. Khi ấy \(\frac{a^2}{b+2c}=\frac{b+2c}{9}\)

Do vậy, đánh giá mà ta nên chọn là:

\(\frac{a^2}{b+2c}+\frac{b+2c}{9}\ge2\sqrt{\frac{a^2}{b+2c}+\frac{b+2c}{9}}=\frac{2}{3}a\)

=> \(\frac{a^2}{b+2c}\ge\frac{2}{3}a-\frac{b+2c}{9}=\frac{6a-b-2c}{9}\)

Thực hiện đánh giá tương tự ta cũng có:

\(\frac{b^2}{c+2a}\ge\frac{6b-c-2a}{9};\frac{c^2}{a+2b}\ge\frac{6c-a-2b}{9}\)

Cộng theo vế của 3 BĐT ta được đpcm

22 tháng 2 2020

https://olm.vn/hoi-dap/detail/82505750499.html

22 tháng 2 2020

Ở mục câu hỏi tương tự có bài đó bạn ơi

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:
Áp dụng BĐT Bunhiacopxky:

\((a^3+b^2+c)(\frac{1}{a}+1+c)\geq (a+b+c)^2=9\)

\(\Leftrightarrow \frac{a^3+b^2+c}{a}(1+a+ac)\geq 9\)

\(\Rightarrow \frac{a}{a^3+b^2+c}\leq \frac{1+a+ac}{9}\)

Hoàn toàn TT với các phân thức còn lại, suy ra:

\(\Rightarrow \frac{a}{a^3+b^2+1}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\leq \frac{1+a+ac+1+b+ba+1+c+cb}{9}=\frac{6+ab+bc+ac}{9}\)

Mà theo hệ quả quen thuộc của BĐT AM-GM:

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\Rightarrow \frac{6+ab+bc+ac}{9}\leq \frac{6+3}{9}=1\)

Do đó: \(\Rightarrow \frac{a}{a^3+b^2+1}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$