K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )

=> 2n+1 và 6n+5 đều chia hết cho d

=> 3.(2n+1) và 6n+5 đều chia hết cho d

=> 6n+3 và 6n+5 đều chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

Mà 2n+1 lẻ nên d lẻ

=> d=1

=> ƯCLN (2n+1;6n+5) = 1

=> ĐPCM

k mk nha

1 tháng 1 2018

Gọi UCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d

       6n+5 chia hết cho d

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d

\(\Rightarrow2\) chia hết cho d

\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2

\(\Rightarrowđpcm\)

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^

1 tháng 12 2017

Gọi d là ƯCLN (2n+1,2n+2)

Ta có 2n+1 Chia hết cho d

          2n+2 chia hết cho d

Suy ra : 2n+2 - (2n+1) chia hết cho d

Hay 1 chia hết cho d

Suy ra : d thuộc tập hợp các ước của 1 = 1 (có ngoặc nhọn )

Vậy : d = 1 hay ƯCLN (2n+1 ,2n+2 )= 1 

25 tháng 1 2018

co 2n+1chia het cho n+1

suy ra 2 (n+1)-1 chia het cho n+1

suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)

suy ra n+1=1

suy ra n=0

22 tháng 1 2016

Ta có: A=22+23+...+220

=>2A=23+24+...+221

=>2A-A=A=(23+24+...+221)-(22+23+...+220)

=>A=221-22

=>A+4=(221-4)+4

=>A+4=221

Mà 221 không phải là số nguyên tố (do chia hết cho 2;22;23;...;221)

Nên A+4 không phải là số nguyên tố (đpcm)

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

3 tháng 9 2017

cảm ơn nhiều nhé

15 tháng 8 2017

1)  \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)

\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)

\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)

\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)