\(A=\left(7^1+7^2+7^3+7^4+...+7^4k\right)\)trongđó k là số tự nhiên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(A=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(A=\left(7+7^2+7^3+7^4\right)\left(1+7+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}=7.400.M\right)\)

vậy \(A⋮400\)

Ta có : \(A=7+7^2+7^3+...+7^{4k}\)

\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(=\left(7+7^2+7^3+7^4\right)\left(1+...+7^{4k-4}\right)\)

\(=2800\left(1+...+7^{4k-4}\right)\)

\(=350.8\left(1+...+7^{4k-4}\right)⋮8\)

\(\Rightarrow A⋮8\left(1\right)\)

Ta lại có : \(A=7+7^2+7^3+...+7^{4k}\)

\(\Rightarrow7A=7^2+7^3+7^4+...+7^{4k+1}\)

\(\Rightarrow7A-A=\left(7^2+7^3+7^4+...+7^{4k+1}\right)-\left(7+7^2+7^3+....+7^{4k}\right)\)

hay \(6A=7^{4k+1}-7=7\left(7^{4k}-1\right)\)

Vì \(7\equiv2\left(mod5\right)\)\(\Rightarrow7^{4k}\equiv2^{4k}=16^k\left(mod5\right)\)

mà \(16\equiv1\left(mod5\right)\)\(\Rightarrow16^k\equiv1^k=1\left(mod5\right)\)

\(\Rightarrow7^{4k}\equiv1\left(mod5\right)\)

\(\Rightarrow7^{4k}-1⋮5\left(\cdot\right)\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮5\)

\(\Rightarrow6A⋮5\)

Nhưng \(\left(6;5\right)=1\)

\(\Rightarrow A⋮5\left(2\right)\)

Ta lại có tiếp : \(7\equiv1\left(mod2\right)\)

\(\Rightarrow7^{4k}\equiv1^{4k}=1\left(mod2\right)\)

\(\Rightarrow7^{4k}-1⋮2\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)\(\left(\cdot\cdot\right)\) và \(\left(2;5\right)=1\)\(\Rightarrow7^{4k}-1⋮10\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮10\)

\(\Rightarrow6A⋮10\)

Nhưng \(\left(6;10\right)=1\)

\(\Rightarrow A⋮10\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(5;8;10\right)=1\)

\(\Rightarrow A⋮400\left(đpcm\right)\)

30 tháng 7 2017

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm

25 tháng 3 2016

Nhóm các hạng tử của tổng đã cho theo dạng sau:

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

     \(=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

     \(=\left(7+7^2+7^3+7^4\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

     \(=7\left(1+7+7^2+7^3\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}\right)=7.400.B\)

Vậy,   \(A\)  chia hết cho  \(400\)

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

5 tháng 11 2016

nơi bài 2 là Cho p là số nguyên tố > 7 nha

22 tháng 5 2016

Câu 2 nè:

Ta có:2006 = 2.17.59

Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006

Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.

Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59

suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.

- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)

\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)

hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)

Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17

Chứng minh tương tự suy ra q chia hết cho 59, 17, 2

=>đpcm

22 tháng 5 2016

nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu       "'*"  thui

17 tháng 6 2018

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040