\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+....+\frac{1}{2013^3}<\frac{1}{40...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\left(đpcm\right)\)

  • 1 số bài toán tương tự:

CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)

Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)

 

16 tháng 12 2017

\(-\)\(\frac{1}{3.5}\)\(-\)\(\frac{1}{5.7}\)\(-\)\(\frac{1}{7.9}\)\(-\)..... \(-\)\(\frac{1}{53.55}\)\(-\)\(\frac{1}{55.57}\)

= 1 \(-\)\(\frac{1}{3.5}\)  + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + ..... + \(\frac{1}{53.55}\)  + \(\frac{1}{55.57}\)  )

= 1 \(-\)\(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)\(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)\(\frac{1}{7}\)\(-\)\(\frac{1}{9}\)+....+ \(\frac{1}{53}\)\(-\)\(\frac{1}{55}\)\(\frac{1}{55}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)

= 1 \(-\)\(\frac{1}{3}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)

= 1 \(-\) \(\frac{6}{19}\)\(\frac{1}{2}\)= 1 \(-\)\(\frac{3}{19}\)\(\frac{16}{19}\)

16 tháng 12 2017

\(1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)

đặt \(A=1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)

\(A=1-\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)

đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{53.55}+\frac{1}{55.57}\)

\(2B=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)

\(2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{53.55}+\frac{2}{55.57}\)

\(2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{55-53}{53.55}+\frac{57-55}{55.57}\)

\(2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+\frac{9}{7.9}-\frac{7}{7.9}+...+\frac{55}{53.55}-\frac{53}{53.55}+\frac{57}{55.57}-\frac{55}{55.57}\)

\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)

\(2B=\frac{1}{3}-\frac{1}{57}\)

\(2B=\frac{54}{171}\)

\(\Rightarrow B=\frac{54}{171}:2\)

\(\Rightarrow B=\frac{9}{57}\)

mà \(A=1-B\)

\(\Rightarrow A=1-\frac{9}{57}\)

\(\Rightarrow A=\frac{48}{57}\)

chúc bạn học giỏi ^^

14 tháng 9 2017

a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)

=   \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)

=     \(\frac{1}{3}-\frac{5}{8}\)

\(\frac{8}{24}-\frac{15}{24}\)

\(\frac{-7}{24}\)

b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)

\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)\(\frac{1}{13}\)

\(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)

=                 \(\frac{1}{8}+\frac{1}{13}\)

=                 \(\frac{13}{104}+\frac{8}{104}\)

=                        \(\frac{23}{104}\)

c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)

\(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)

=         \(16:\left(\frac{-8}{9}\right)\)

=         -18

31 tháng 7 2016

Ghi lời giải rõ ràng dùm mik nhoa. Cám ơn nhìu

14 tháng 3 2016

cái này trong nâng cao và phát triển toán 7 ý , trong câu hỏi tương tự cũng có