Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_Appreciate:
\(3^2=2.4+1\)
\(5^2=4.6+1\)
...
\(\left(2n+1\right)^2=2n\left(2n+2\right)+1\)
_Solution:
\(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)
\(A< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n.\left(2n+2\right)}\)\(A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(A< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}< \frac{1}{4}\) (proof)
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)
a. Ta có: \(\frac{1}{2^2}\)< \(\frac{1}{1.3}\)
\(\frac{1}{4^2}\)< 1/(3.5)
1/(6^2) <1/(5.7)
...
1/(2n)^2 < 1/(2n-1)(2n+1)
=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 1/(1.3) +...+1/(2n-1)(2n+1)
=> 2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < (1/1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-1) - 1/(2n+1)
=>2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < 1 - 1/(2n+1) = 2n/(2n+1)
=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 2n/(2n+1) . 1/2
Vì 2n/2n+1 < 1 => 2n/(2n+1) . 1/2 < 1/2
=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 <1/2
Câu b tương tự
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
< \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
< \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
< \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
< \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)
2. \(\frac{1}{x-1}-\frac{7}{x-2}=\frac{1}{\left(x-1\right)\left(2-x\right)}\) (ĐKXĐ:\(x\ne1,x\ne2\))
\(\Leftrightarrow\frac{1}{x-1}+\frac{7}{2-x}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Leftrightarrow\frac{2-x+7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Rightarrow2-x+7\left(x-1\right)=1\)
\(\Leftrightarrow2-x+7x-7=1\)
\(\Leftrightarrow-x+7x=1-2+7\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)
Vậy phương trình trên vô nghiệm
ko phan tich duoc nha bn
chuc bn hoc gioi
happy new year
a) Đề ( \(x\ne\pm1\))
>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)
Vậy \(S=\varnothing\)
b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)
\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)
Vậy \(S=\left\{\frac{20}{3}\right\}\)
Đặt \(T=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n-1\right)n}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}-\frac{1}{n}\)
\(=\frac{1}{2}-\frac{1}{n}< \frac{1}{2}^{\left(đpcm\right)}\) (không chắc nha)
Đặt \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{1}=\frac{1}{1},\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},....,\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
=> \(A< \frac{1}{2^2}.\left[1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right]\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2^2}.\left(2-\frac{1}{n+1}\right)=\frac{1}{2}-\frac{1}{4.\left(n+1\right)}\)
p/s: bài tớ ko bt đúng ko, nhưng tth bn làm vậy sẽ ko có quy luật, đoạn này
nếu cứ theo quy luật, tiếp tục sẽ ntn:\(\frac{1}{6^2}< \frac{1}{5.6};\frac{1}{8^2}< \frac{1}{6.7};\frac{1}{10^2}< \frac{1}{7.8}\)
Cách 1:
Sau khi phân tích hoàn toàn ra , ta cần CM
\(Σ\left(a^4b+a^4c+3a^3b^2+3a^3c^2-8a^2b^2c\right)\ge0\)
Đúng theo BĐT Muirhead
Cách 2: Giải theo SOS, ta cần CM
\(\frac{\left(a+b+c\right)^2}{6abc}\geΣ\frac{1}{a+b}\) tức là \(\frac{\left(a+b+c\right)^3}{3abc}\ge2Σ\frac{a+b+c}{a+b}\)
tức là \(\frac{\left(a+b+c\right)^3}{3abc}\ge6+Σ\frac{2c}{a+b}\) tức là \(\frac{\left(a+b+c\right)^3}{3abc}-9\geΣ\frac{2c}{a+b}-3\)
tức là \(\frac{\left(a+b+c\right)^3-27abc}{3abc}\geΣ\frac{2c-a-b}{a+b}\)
tức là \(\frac{Σ\left(a^3+3a^2b+3a^2c-7abc\right)}{3abc}\geΣ\frac{c-a-\left(b-c\right)}{a+b}\)
tức là \(\frac{Σ\left(a^3-abc\right)+3Σ\left(a^2b+a^2c-2abc\right)}{3abc}\geΣ\frac{c-a-\left(b-c\right)}{a+b}\)
tức là \(\frac{\frac{1}{2}\left(a+b+c\right)Σ\left(a-b\right)^2+3Σc\left(a-b\right)^2}{3abc}\geΣ\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\)
tức là \(Σ\left(a-b\right)^2\left(\frac{a+b+7c}{6abc}-\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\ge0\)
Đúng theo BĐT AM-GM (giải theo SOS xấu v~)
\(\left(a+b+7c\right)\left(a+c\right)\left(b+c\right)-6abc>\left(a+b\right)\left(a+c\right)\left(b+c\right)-6abc\ge8abc-6abc>0\)
\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(=\frac{1}{4}\left(2-\frac{1}{n}\right)\)\(=\frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\)
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)