K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

9 tháng 8 2017

Gọi A= n^5-5n^3+4n 

Ta có : n^5-5n^3+4n

=n(n^4-5n^2+4)

=n(n^4-4n^2-n^2+4)

=n{(n^2-4)(n^2-1)}

= n(n+1)(n-1)(n+2)(n-2)           

Vì A là 5 số tự nhiên liên tiếp nên A chia hết cho cả 2,3,4,5. Mà 2.3.4.5=120

=>A chia hết cho 120        

28 tháng 6 2017

a)\(A=n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

\(=\left(n^4-n^2-4n^2+1\right)n\)

\(=\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]n\)

\(=\left(n^2-4\right)\left(n^2-1\right)n\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)

Điều cuối đúng hay ta có ĐPCM

b)Gọi 4 số tự nhiên liên tiếp đó lần lượt là \(a;a+1;a+2;a+3 (a;a+1;a+2;a+3 \in N)\)

Ta có;

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt \(a^2+3a=t\) thì ta có:

\(=t\left(t+2\right)+1=t^2+2t+1\)

\(=\left(t+1\right)^2=\left(a^2+3a\right)^2\) là số chính phương

Hay ta cũng có ĐPCM

28 tháng 1 2021

Đặt A = n4 - 4n3 - 4n2 + 16n

= n3(n - 4) - 4n(n - 4)

= (n - 4)(n3 - 4n)

= (n - 4)n(n2 - 4)

= (n - 4)n(n - 2)(n + 2)

= (n - 4)(n - 2)n(n + 2) 

Vì n chẵn => n = 2k (k \(\inℕ^∗\))

Khi đó A = (2k - 4)(2k - 2)2k(2k + 2)

= 2(k - 2).2(k - 1).2k.2(k + 1)

= 16(k - 2)(k - 1)k(k + 1) 

Vì (k - 2)(k - 1)k(k + 1) là tích 4 số nguyên liên tiếp 

=> Tồn tại 2 số chia hết cho 2 ; 4 

Mà  n > 4 => k > 2 

 => (k - 2)(k - 1).k(k + 1) \(⋮\)

lại có (k - 2)(k - 1)k(k + 1)  \(⋮\)3 (tích 4 số liên tiếp => tồn tại 1 số chia hết cho 3)

Mà ƯCLN(8;3) = 1

=> (k  - 2)(k - 1)k(k + 1) \(⋮\)8.3 = 24

=> A \(⋮\)384 

28 tháng 1 2021

n chẵn > 4 mà Xyz ? 

30 tháng 7 2017

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm