K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Nếu n lẻ thi n+7 luôn chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số lẻ thì kết quả là 1 số chẵn ) 

Nếu n chẵn thì n+4 là số chẵn =>  (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số chẵn thì kết quả là 1 số chẵn ) 

9 tháng 11 2017

Nếu n lẻ thì n + 7 là 1 số chẵn => (n+4)(n+7) là một số chẵn 

Nếu n chẵn thì n + 4 là 1 số chẵn => (n+4)(n+7) cũng là một số chẵn

10 tháng 11 2017

dễ thử chọn nha

7 tháng 11 2017

+Nếu n lẻ thì n+7 chẵn hay n+7 chia hết cho 2 =>(n+4).(n+7) chẵn 

+Nếu n chẵn thì n+4 chẵn hay n+4 chia hết cho 2 => (n+4).(n+7) chẵn

Vậy (n+4).(n+7) chẵn với mọi n thuộc N

7 tháng 11 2017

nếu n là số lẻ thì n+4 là số lẻ và n+7 là số chẵn vậy chẵn + le = chẵn

nếu n là số chẵn thì n+4 là số chẵn và n+7 là số lẻ vậy như trên chẵn+lẻ=chẵn

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

17 tháng 1 2016

*Với n là số lẻ

=>n+4 là số lẽ;n+7 là số chẳn

=>(n+4)(n+7) là số chẳn

*Với n là số chẳn

=>n+4 là số chẳn;n+7 là số lẽ

=>(n+4)(n+7) là số chẳn

=>(n+4)(n+7) là số chẳn với mọi số nguyên n

7 tháng 11 2019

n là số tự nhiên => n = 2k+1 hoặc n = 2k (k thuộc N)

Xét n = 2k+1 => (n+4)(n+7) = (2k+5)(2k+8) = 4k^2 + 10k + 16k + 40 = 4k^2 + 26k + 40 là số chẵn

Xét n = 2k => (n+4)(n+7) = (2k+4)(2k+7) = 4k^2 + 22k + 28 là số chẵn. 

Vậy với mọi số tự nhiên n thì (n+4)(n+7) là một số chẵn :))

6 tháng 11 2016

Đặt n là số lẻ suy ra n=2k+1

suy ra (n+4)(n+7) = (2k+1+4)(2k+1+7) = (2k+5)(2k+8) = 4k^2 +16k + 10k + 40 = 4k^2 + 26k + 40 = 2(2k^2+13k+20)

vậy suy ra trong trường hợp này (n+4)(n+7) chia hết cho 2

xét n là số chẵn nên n=2k

ta có

(n+4)(n+7) = (2k+4) +(2k+7) = 4k^2+ 14k + 8k + 28 = 4k^2 + 22k + 28 = 2(2k^2+11k+14)

vậy suy ra trong trường hop85 này (n+4)(n+7) chia hết cho 2

vậy (n+4)(n+7) luôn là số chẵn với mọi số tự nhiên n

 
 
7 tháng 7 2023

Với n là số tự nhiên chẵn thì (n+4) là một số chẵn

Suy ra tích (n+4)(n+7) là một số chẵn.

Với n là số tự nhiên lẻ thì (n+7) là một số chẵn nên tích (n+4)(n+7) là một số chẵn.

Vậy (n+4)(n+7) luôn là một số chẵn với mọi số tự nhiên n.

 

21 tháng 12 2018

n=2

bn nhớ tích dùng cho mk nhé 

thanks you