K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 3 2018

Lời giải:

Xét biểu thức \(A=n^3-13n\). Ta cần cm \(A\vdots 6\)

Thật vậy: \(A=n^3-13n=n^3-n-12n=n(n^2-1)-12n\)

\(A=n(n-1)(n+1)-12n\)

Vì \(n,n-1\) là hai số tự nhiên liên tiếp nên tích \(n(n-1)\vdots 2\)

\(\Rightarrow n(n-1)(n+1)\vdots 3\)

Vì \(n-1,n,n+1\) là ba số tự nhiên liên tiếp nên tích \(n(n-1)(n+1)\vdots 3\)

Kết hợp với (2,3) nguyên tố cùng nhau, do đó: \(n(n-1)(n+1)\vdots 6\)

Mà \(12n\vdots 6\)

\(\Rightarrow A= n(n-1)(n+1)-12n\vdots 6\Leftrightarrow n^3-13n\vdots 6\)

Ta có đpcm.

Xin lỗi bạn mik lp 7

Gọi số tự nhiên đó là n

Ta có

        n^3-7n=n^3-n-6n=n(n^2-1)-6n

       =n(n-1)(n+1)-6n  \(\left(1\right)\)

     Do n,n-1,n+1 là 3 stn liên tiếp

    =>n(n-1)(n+1) chia hết cho 6

    6n chia hết cho 6

   => (1) chia hết cho 6

   =>n^3-7n chia hết cho 6 ( dpcm )

26 tháng 11 2022

B=a^3-13a

=a^3-a-12a

=a(a-1)(a+1)-12a

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 6

=>B chia hết cho 6

18 tháng 6 2016

\(a^3-a=a\left(a^2-1\right)\)

=a(a-1)(a+1) chia hết cho 3

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

30 tháng 1 2021

そちそらみきみらにそちにきにかなにのくらみきくにいな

30 tháng 1 2021

Gọi 2 số đó lần lượt là a ; b (a,b \(\inℤ\))

Xét hiệu (a3 + b3) - (a + b) 

= (a3 - a) + (b3 - b)

= a(a2 - 1) + b(b2 - 1)

= (a - 1)a(a + 1) + (b - 1)b(b + 1)

Vì a ; b \(\inℤ\)=> (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp 

=> Tồn tại 1 số chia hết cho 2 và 3 , mà (2,3) = 1

=> (a - 1)a(a + 1) \(⋮\)

Tương tự (b - 1)b(b + 1) \(⋮\)6

=> (a3 + b3) - (a + b) \(⋮\)6

=> ĐPCM