K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(x^2-6x+10\)

\(=x^2-2.x.3+9+1\)

\(=\left(x-3\right)^2+1>0\)

\(4x^2-20x+27\)

\(=\left(2x\right)^2-2.2x.5+25+2\)

\(=\left(2x-5\right)^2+2>0\)

\(x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

học tốt

31 tháng 8 2018

a) A=x2 _ 6x + 10

<=> A=x2-6x+9+1

<=> A=(x-3)2+1 luôn dương với mọi x

b) B=4x2 _ 20x + 27

<=> 4x2-20x +25+2

<=> (2x-5)2+2 luôn dương với mọi x

c) C=x2 + x +1

<=> x2+2.x 1/2  + 1/4 +3/4

<=> (x+1/2)2+3/4 luôn dương với mọi x 

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

28 tháng 6 2017

Ta có : A = x2 - 6x + y2 + 8y + 27

= (x2 - 6x + 9) + (y2 + 8y + 16) + 2 

= (x2 - 2.x.3 + 32) + (y2 + 2.x.4 + 42) + 2

= (x - 3)2 + (y + 4)2 + 2 

Vì (x - 3)2 và (y + 4)2 \(\ge0\forall x\in R\)

Nên : (x - 3)2 + (y + 4)\(\ge0\forall x\in R\)

Do đó : (x - 3)2 + (y + 4)2 + 2 \(\ge2\forall x\in R\)

Hay (x - 3)2 + (y + 4)2 + 2 \(>0\forall x\in R\)

Vậy biểu thức A luôn luôn dương với mọi x thuộc R (đpcm)

28 tháng 6 2017

A=(x2 - 2.3x + 9) + ( y2 + 2.4y + 16 ) + 2

A=(x2 - 2.3x + 32) + (y2 + 2.4y +42) + 2

A=(x-3)2 + (y+4)2 + 2

Vì (x-3)2 + (y+4)luôn > hoặc = 0 với mọi x;y

Nên (x-3)2 + (y+4)2 + 2 luôn > hoặc = 2 với mọi x; y

Vậy A luôn dương(>0)

2 tháng 6 2018

ko biết làm

2 tháng 6 2018

a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1

       =\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)

\(\Rightarrow\)A dương với mọi x,y

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

30 tháng 7 2017

giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^

xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha

24 tháng 6 2017

làm x mũ 2 như nào vậy

24 tháng 6 2017

x- x +1 

x2  - 2.x .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   = (x- \(\frac{1}{2}\)  \(\ge\)0 => (x -  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi x

b,x2+x+2

x2  +  2.x .1/2 +(1/2)^2 - 7/4 =(x+1/2)^2  \(\ge\)0 => (x +  1/2)^ 2 - 7/4 \(\ge0\) =>  luôn dương  với mọi x

c,-a2+a-3

-(a2-a+3)=.-(a- 2a  .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\)  _  \(\frac{3}{4}\)   =  -(a \(\frac{1}{2}\)  \(\ge\)0 => ( a-  1/2)^ 2 - 3/4 \(\ge0\) =>  luôn dương  với mọi a

d, 3x2-x+1:4x+2x-13

tương tựevhuô,i9o