Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thay x = 2 vào vế trái của phương trình (1), ta có:
22 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái của phương trình (2), ta có:
2 + (2 – 2)(2.2 +1) = 2 + 0 = 2
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).
Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).
b. Thay x = 3 vào vế trái của phương trình (1), ta có:
32 – 5.3 + 6 = 9 – 15 + 6 = 0
Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).
Thay x = 3 vào vế trái của phương trình (2), ta có:
3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2
Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).
Vậy x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).
c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
\(x^2-2x+1=\left(x-1\right)^2\ge0\Rightarrow x^2+1\ge2x\)
\(x^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)^2\ge0\Rightarrow x^2\left(x^2-1\right)\ge\left(x^2-1\right)\)
\(2x^2+2x-1+15=2\left(x+\frac{1}{2}\right)^2+\frac{27}{2}\ge0\Rightarrow2x^2+2x-1\ge-15\)
Ta có
\(x^2+y^2-2x-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=\)
\(\left(x-1\right)^2+\left(y-2\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) >0 => đpcm
a)\(x^2-4xy+4y^2+3\)
\(=\left(x-2y\right)^2+3\)
Do \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)
\(\left(x-2y\right)^2+3>0\forall x,y\)
=> Đpcm
b)\(2x-2x^2-1\)
\(=-x^2-x^2+2x-1\)
\(=-x^2-\left(x-1\right)^2\)
\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)
=> đpcm
Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.
Chúc bạn học tốt!^^
sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT
2x2 - 2x + 1 > 0
⇔ x2 - x + \(\dfrac{1}{2}\) > 0
⇔ (x - \(\dfrac{1}{2}\) )2 + \(\dfrac{1}{4}\) > 0 luôn đúng.