Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{50}=1-\frac{1}{50}< 1\)
S<A= 1/1.2+1/2.3+...+1/40.50 => A=1-1/2+1/2-1/3+1/3-...+1/49-1/50
=> A=1-1/50 <1
Mà S<A<1 => S<1 =>(ĐPCM)
Cho A = 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^250
a)Tính 3A
3A = 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^251
b) hơi khó
mình đang nghĩ ạ
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)
\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};\frac{1}{5^2}<\frac{1}{4.5};....;\frac{1}{100^2}<\frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A<\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)
Vâyk...
ta thấy:
1/3^2<1/2.3
1/4^2<1/3.4
.................
1/100^2<1/99.100
=>1/3^2+1/4^2+1/5^2+.........1/100^2<1/2.3+1/3.4+1/4.5+....+1/99.100
=1/2-1/3+1/3-1/4+.........+1/99-1/100
=1/2-1/100<1/2(đpcm)