K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

5.6 vẫn bằng 5.6 chứng minh đá rằng 26 không chia hết

6 tháng 1 2022

de lam luon

8 tháng 8 2017

\(S=5+5^2+5^3+.............+5^{2004}\)

\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)

\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)

\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)

\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)

\(\Leftrightarrow S⋮126\rightarrowđpcm\)

8 tháng 8 2017

\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)

Vậy \(S⋮26\)

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

Oke oke -)) để tớ hỏi lại cô giáo .

12 tháng 4 2020

Phương Linh Nguyễn Hoàng Bạn vt lại đề đc k ạ ? Sao mà AI vuông góc vs AB đc ạ ?

20 tháng 5 2017

Gọi \(M_1\) là một mặt của hình đa diện (H). Gọi A, B, C là đỉnh liên tiếp của \(M_1\). Khi đó AB, BC là hai cạnh của (H). Gọi \(M_2\) làm mặt khác với \(M_1\) và có chung cạnh AB với \(M_1\). Khi đó \(M_2\) còn có ít nhất một đỉnh D khác với A và B. Nếu \(D\equiv C\) thì \(M_1\)\(M_2\) có hai cạnh chung AB và BC, điều này vô lí.

Vậy D phải khác C. Do đó (H) có ít nhất bốn đỉnh A, B, C, D

2 tháng 5 2016

Q(x)=x4+2015x2+2016

   có:   x4\(\ge\)0   với mọi x

          2015x\(\ge\)0    với mọi x

           2016>0

 => x4+2015x2+2016>0

Q(x) ko có nghiệm

2 tháng 5 2016

Ta có x^4 lớn hơn hoặc bằng 0 vs mọi x thuộc N 

2015x^2 lớn hơn hoặc bằng 0 vs mọi x thuộc N 

2016>0=)x^4+2015x^2+2016 >0

Vậy Q(x) hk có nghiệm 

 

13 tháng 5 2020

bài làm

n*1=n

vì n/n=1 và n là số tự nhiên  

C2:

xét 1*1=1

2*1=2

3*1=3

.

.

.

..

.

n*1=n 

13 tháng 5 2020

n*1*1=n*1

=> n*1=n*1

=> n=n

subscribe my youtube channe; Azaig. Tks :)))

22 tháng 3 2020

B A C D M

a, - Ta có : Tam giác ABC cân tại A .

=> AB = AC ( tính chất tam giác cân )

Mà AB = AD ( GT )

=> AB = AC = AD .

=> BD = BA + AD = 2AC .

=> AC = \(\frac{1}{2}BD\)

Vậy tam giác BCD vuông tại C ( tính chất đường trung tuyến trong tam giác vuông )

b, - Xét tam giác ADC có : AD = AC ( cmt )

=> Tam giác ADC cân tại A .

Mà AM là đườn phân giác .

=> AM là đường trung trực .

=> AM \(\perp\) DC .

Mà tam giác ADC vuông tại C .

=> BC \(\perp\) DC

=> AM // BC ( \(\perp\) DC )

Tham khảo:

Xét 2 tứ diện A’ABD và CC’D’B’

Dùng phép đối xứng qua tâm O của hình hộp

Ta có:

A’ đối xứng C qua O

A đối xứng C’ qua O

B đối xứng D’ qua O

D đối xứng B’ qua O

Suy ra tứ diện A’ABD bằng tứ diện CC’D’B’.

26 tháng 3 2016

a) Ta có 

\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)

Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :

\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)

hay 

\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)

 

b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :

\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)

Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)

\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

\(\Rightarrow lgc=\frac{1}{1-lga}\)

Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)