K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...

3 tháng 10 2016

2n3+3n2+n=(2n3+2n2)+(n2+n)=2n2(n+1)+n(n+1)=n(n+1)(2n+1)n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2.n chia 3 có thể dư 1 ; 2 hoặc không dư.Nếu không dư, tích chắc chắn chia hết cho 3Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3Do đó tích trên luôn chia hết cho 2 và 3Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6Vậy ... 

3 tháng 10 2016

TA CÓ : 

n^3 + 3n^2 + 2n = n( n^2 + 3n + 2) = n( n+1) (n+2). 
Mà n(n+1)(n+2) là một số chia hết cho 2 và 3, nên nó chia hết cho 6.

5 tháng 4 2016

A = 2n + 3n2 + n = n ( 2n2 + 3n + 1)

= n ( n+1) (2n+1 )

= n(n+1)[(n+2)+(n-1)]

=n(n+1)(n+2) + n(n+1)(n-1)

Vì mỗi số hạnh là tích 3 số nguyên liên tiếp => tồn tại ít nhất 1 số là B(2) và B(3) mà (2;3)=1=> mỗi số hạng đều chia hết cho 3.2=6

=> A chia hết cho 6

=> ĐPCM

k cho mk nka

5 tháng 4 2016

Có 2n3+3n2+n = 2n3+2n2+n2+n = 2n2(n+1)+n(n+1) = n(n+1)(2n+1)

Vì n và n+1 là 2 số nguyên liên tiếp => 1 trong 2 số là số chẵn => n(n+1) chia hết cho 2 (1)

Xét n= 3k, 3k+1, 3k+2 với k thuộc Z ta cũng đều ra chia hết cho 3 (2)

Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 6 => ĐPCM

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

18 tháng 9 2019

Tham khảo cách làm tương tự: Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy