K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

23 tháng 5 2016

ta có 1/23<1/1*2*3      1/33<1/2*3*4      1/43<1/3*4*5 .... 1/n3<1/(n-1)*n*(n+1)

Vậy=1/23+1/33+...+1/n3<1/1*2*3+1/2*3*4+.....1/(n-1)*n*(n+1)

Ta có      1/1*2*3      +        1/2*3*4       +...+      1/(n-1)*n*(n+1)

 =1/2*(1/1*2-1/2*3   +      1/2*3-1/3*4    +...+  1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-     1/6      +       1/6   -1/12+..........+1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-1/n*(n+1))

=1/4-1/2n*(n+1)<1/4

Vì 1/2^3+1/3^3+..+1/n^3<1/4-1/2n*(n+1)<1/4

nên =>1/2^3+1/3^3+...+1/n^3<1/4

23 tháng 5 2016

\(< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\)

\(< 2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(< \frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{4\cdot5}-\frac{1}{5\cdot6}+...+\frac{2}{\left(n-1\right)\cdot n}\)

\(< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{2}{\left(n-1\right)\cdot n}\right)\)

\(< \frac{1}{4}-\frac{1}{\left(n-1\right)\cdot n}\)

                                          ĐPCM

27 tháng 11 2016

1) Giải

Vì n thuộc N và n > 1

Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n

Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)

=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp

Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1

Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1

Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6

2) Giải

Ta có : n( n + 2 ) ( 25n2 - 1 )

=> n( n + 2 ) ( n2 + 24n2 - 1 )

=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]

=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2

=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)

Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n

vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp

=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3

ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)

Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)

Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1

Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24

 

20 tháng 12 2018
chữ E có nghĩa là thuộc nha mấy bạn
20 tháng 12 2018

Gọi ƯCLN(n+3;n+2) là d

ta có: n+3 chia hết cho d

n+2 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> ƯCLN(n+3;n+2) = 1

10 tháng 2 2020

Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)

kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)

=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)

18 tháng 10 2015

Đây là dạng toán quy nạp nha

18 tháng 10 2015

Đây là dạng toán quy nạp nha

22 tháng 6 2015

  \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=10\left(3^n-2^{n-1}\right)\)

Luôn luôn chia hết cho 10 => ĐPCM