Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
\(S=4+3^2+3^3+3^4+.....+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right).\left(1+3^4+...+3^{96}\right)\)
\(=40\left(1+3^4+...+3^{96}\right)\) \(⋮40\) (đpcm)
xét \(3S=12+3^3+3^4+....+3^{100}\)
nên 3S-S=2S=\(3^{100}-3^2-4+12=3^{100}-1\)
=>S=\(\frac{3^{100}-1}{2}\)
Ta thấy \(3^2\equiv-1\left(mod5\right)\)nên \(3^{100}\equiv1\left(mod5\right)=>S⋮5\) (1)
ta có\(3^4\equiv1\left(mod16\right)\)nên \(3^{100}\equiv1\left(mod16\right)\)=>\(S⋮8\) (2)
từ (1) (2) =>S\(⋮40\left(đpcm\right)\)
Ta có: A= 3+32+33+…+399+3100.
= (3+32) + (33+34) +…+399+3100.
=3(1+3) + 33(1+3) + … + 399(1+3)
=3.4 + 33.4 + … + 399.4
=4(3 + 33 + … +399)
=> A = 4(3 + 33 + … +399)
Vì A có một ước là 4 nên A chia hết cho 4.
Ta có : A = 3 + 32 + 33 + 34 + ..... + 399 + 3100
=> A = (3 + 32) + (33 + 34) + ..... + (399 + 3100)
=> A = 3(1 + 3) + 33(1 + 3) + ...... + 399(1 + 3)
=> A = 3.4 + 33.4 + .... + 399.4
=> A = 4(3 + 33 + 35 + ..... + 399)
Mà (3 + 33 + 35 + ..... + 399) là số nguyên
Vậy : A = 4(3 + 33 + 35 + ..... + 399) chia hết cho 4 .
1+3+3^2+...+3^99\(⋮\)40
(1+3+3^2+3^3)+...+(3^96+3^97+3^98+3^99)
1x(1+3+3^2+3^3)+...+3^96x(1+3+3^2+3^3)
1x40+...+3^96x40
=40x(1+...+3^96)\(⋮\)40
Vậy 1+3+3^2+...+3^99\(⋮\)40
Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440
hay 2C = 531440 => C = 265720 =40*6643
\(A=1+3+3^2+3^3+......+3^{99}\\ =\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\\ =40+3^4\left(1+3+3^2+3^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\\ =40+3^4.40+.....+3^{96}.40\\ =40\left(1+3^4+....+3^{96}\right)⋮40\)
Chứng tỏ rằng tổng \(1+3+3^2+.....+3^{99}\)chia hết cho 40
=> \(1+3+3^2+.....+3^{99}\)
= \(3^0+3^1+3^2+.......+3^{99}\)
= \(\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+.....+3^{99}\right)\)
=\(3^0.\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+...+3^{95}\right)\)
=\(3^0.40+3^4.40+...+3^{95}\)
= 40. \(\left(3^0+3^4\right)+.....+3^{95}\)
Vậy 40. \(\left(3^0+3^4\right)+.....+3^{95}\)\(⋮\) 40
A = 2 + 22 + ...... + 260
= 2(1+2) +.......+ 260 (1 +2)
= 3( 2 + ....+ 260) nên A chia hết cho 3
A = _________________(Đề)
= 2( 1 +2 + 22) +...+ 258(1 +2 + 22)
= 7(2 + ...258) nên A chia hết cho 7
Bạn làm tương tự các câu khác nha
\(1+3+3^2+3^3+.............+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+........\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=40+3^4.\left(40\right)+..........+3^{96}\left(40\right)\)
\(=40.\left(1+3^4+.........+3^{96}\right)\text{chia hết cho 40}\)